skip to main content


Title: Optical bistability in PECVD silicon-rich nitride

We present a study of optical bi-stability in a 3.02 refractive index at 1550nm plasma enhanced chemical vapor deposition (PECVD) silicon-rich nitride (SRN) film, as it pertains to bi-stable switching, memory applications, and thermal sensing applications. In this work we utilize an SRN ring resonator device, which we first characterize at low-power and then compare thermo-optic coefficients, (2.12 ± 0.125) × 10−4/°C, obtained from thermal-heating induced resonance shifts to optically induced resonance shifts as well as estimated propagation loss and absorption. We then measure the time response of this nonlinearity demonstrating the relaxation time to be 18.7 us, indicating the mechanism to be thermal in nature. Finally, we demonstrate bi-stable optical switching.

 
more » « less
Award ID(s):
2023730
NSF-PAR ID:
10383144
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
30
Issue:
25
ISSN:
1094-4087; OPEXFF
Page Range / eLocation ID:
Article No. 45340
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We demonstrate the thermo-optic properties of silicon-rich silicon nitride (SRN) films deposited using plasma-enhanced chemical vapor deposition (PECVD). Shifts in the spectral response of Mach-Zehnder interferometers (MZIs) as a function of temperature were used to characterize the thermo-optic coefficients of silicon nitride films with varying silicon contents. A clear relation is demonstrated between the silicon content and the exhibited thermo-optic coefficient in silicon nitride films, with the highest achievable coefficient being as high as (1.65±0.08) ×10−4K-1. Furthermore, we realize an SRN multi-mode interferometer (MMI) based thermo-optic switch with over 20 dB extinction ratio and total power consumption for two-port switching of 50 mW.

     
    more » « less
  2. Optical phase-change materials exhibit tunable permittivity and switching properties during phase transition, which offers the possibility of dynamic control of optical devices. Here, a wavelength-tunable infrared chiral metasurface integrated with phase-change material GST-225 is demonstrated with the designed unit cell of parallelogram-shaped resonator. By varying the baking time at a temperature above the phase transition temperature of GST-225, the resonance wavelength of the chiral metasurface is tuned in the wavelength range of 2.33 µm to 2.58 µm, while the circular dichroism in absorption is maintained around 0.44. The chiroptical response of the designed metasurface is revealed by analyzing the electromagnetic field and displacement current distributions under left- and right-handed circularly polarized (LCP and RCP) light illumination. Moreover, the photothermal effect is simulated to investigate the large temperature difference in the chiral metasurface under LCP and RCP illumination, which allows for the possibility of circular polarization-controlled phase transition. The presented chiral metasurfaces with phase-change materials offer the potential to facilitate promising applications in the infrared regime, such as chiral thermal switching, infrared imaging, and tunable chiral photonics.

     
    more » « less
  3. Abstract

    The recently discovered ferroelectric nematic (NF) liquid crystals (LCs) with over 0.04 C m−2ferroelectric polarization and 104relative dielectric constants, coupled with sub‐millisecond switching, offer potential applications in high‐power super capacitors and low voltage driven fast electro‐optical devices. This paper presents electrical, optical, and electro‐optical studies of a ferroelectric nematic LC material doped with commercially available chiral dopants. While theNFphase of the undoped LC is only monotropic, the chiralNFphase is enantiotropic, indicating a chirality induced stabilization of the polar nematic order. Compared to undopedNFmaterial, a remarkable improvement of the electro‐optical switching time is demonstrated in the chiral doped materials. The color of the chiral mixtures that exhibit a selective reflection of visible light in the chiralNFphase, can be reversibly tuned by 0.02–0.1 V µm−1 in‐plane electric fields, which are much smaller than typically required in full‐color cholesteric LC displays and do not require complicated driving scheme. The fast switchable reflection color at low fields has potential applications for LC displays without backlight, smart windows, shutters, and e‐papers.

     
    more » « less
  4. Reconfigurable metasurfaces have been pursued intensively in recent years for the ability to modulate the light after fabrication. However, the optical performances of these devices are limited by the efficiency, actuation response speed and mechanical control for reconfigurability. In this paper, we propose a fast tunable optical absorber based on the critical coupling of resonance mode to absorptive medium and the plasma dispersion effect of free carriers in semiconductor. The tunable absorber structure includes a single-layer or bi-layer silicon photonic crystal slab (PCS) to induce a high-Q optical resonance, a monolayer graphene as the absorption material, and bottom reflector to remove transmission. By modulating the refractive index of PCS via the plasma dispersion of the free carrier, the critical coupling condition is shifted in spectrum, and the device acquires tuning capability between perfect absorption and total reflection of the incident monochromatic light beam. Simulation results show that, with silicon index change of 0.015, the tunable absorption of light can achieve the reflection/absorption switching, and full range of reflection phase control is feasible in the over coupling region. The proposed reconfigurable structure has potential applications in remote sensing, free-space communications, LiDAR, and imaging. 
    more » « less
  5. Abstract

    Ferroelectric materials, which exhibit switchable polarization, are potential candidates for photovoltaic applications owing to their intriguing charge carrier separation mechanism associated with polarization and breaking of inversion symmetry. To overcome the low photocurrent of ferroelectrics, extensive efforts have focused on reducing their bandgaps to increase the optical absorption of the solar spectrum and thus the power conversion efficiency. Here, a new avenue of enhancing photovoltaic performance via engineering the polarization across a morphotropic phase boundary (MPB) is reported. Tetragonal compositions in the vicinity of the MPB in a PbTiO3‐Bi(Ni1/2Ti1/2)O3solid solution are shown to generate up to 3.6 kV cm−1photoinduced electric field and 6.2 µA cm−2short‐circuit photocurrent, multiple times higher than its pseudocubic counterpart under the same illumination conditions with excellent polarization retention. This enhancement allows the investigation of the correlation between the polarization switching and photovoltaic switching, which enables a controllable multistate photocurrent. Combined with a bandgap of 2.2 eV, this material exhibits a sizable photoresponse over a broad spectral range. These findings provide a new approach to improve the photovoltaic performance of ferroelectric materials and can expand their potential applications in optoelectronic devices.

     
    more » « less