skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An integrative genomic and phenomic analysis to investigate the nature of plant species in Escallonia (Escalloniaceae)
Abstract What we mean by species and whether they have any biological reality has been debated since the early days of evolutionary biology. Some biologists even suggest that plant species are created by taxonomists as a subjective, artificial division of nature. However, the nature of plant species has been rarely tested critically with data while ignoring taxonomy. We integrate phenomic and genomic data collected across hundreds of individuals at a continental scale to investigate this question inEscallonia(Escalloniaceae), a group of plants which includes 40 taxonomic species (the species proposed by taxonomists). We first show that taxonomic species may be questionable as they match poorly to patterns of phenotypic and genetic variation displayed by individuals collected in nature. We then use explicit statistical methods for species delimitation designed for phenotypic and genomic data, and show that plant species do exist inEscalloniaas an objective, discrete property of nature independent of taxonomy. We show that such species correspond poorly to current taxonomic species ($$< 20\%$$ < 20 % ) and that phenomic and genomic data seldom delimit congruent entities ($$< 20\%$$ < 20 % ). These discrepancies suggest that evolutionary forces additional to gene flow can maintain the cohesion of species. We propose that phenomic and genomic data analyzed on an equal footing build a broader perspective on the nature of plant species by helping delineate different ‘types of species’. Our results caution studies which take the accuracy of taxonomic species for granted and challenge the notion of plant species without empirical evidence. Note: A version of the complete manuscript in Spanish is available in the Supplemental Materials.  more » « less
Award ID(s):
1939128
PAR ID:
10383785
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Given a compact doubling metric measure spaceXthat supports a 2-Poincaré inequality, we construct a Dirichlet form on$$N^{1,2}(X)$$ N 1 , 2 ( X ) that is comparable to the upper gradient energy form on$$N^{1,2}(X)$$ N 1 , 2 ( X ) . Our approach is based on the approximation ofXby a family of graphs that is doubling and supports a 2-Poincaré inequality (see [20]). We construct a bilinear form on$$N^{1,2}(X)$$ N 1 , 2 ( X ) using the Dirichlet form on the graph. We show that the$$\Gamma $$ Γ -limit$$\mathcal {E}$$ E of this family of bilinear forms (by taking a subsequence) exists and that$$\mathcal {E}$$ E is a Dirichlet form onX. Properties of$$\mathcal {E}$$ E are established. Moreover, we prove that$$\mathcal {E}$$ E has the property of matching boundary values on a domain$$\Omega \subseteq X$$ Ω X . This construction makes it possible to approximate harmonic functions (with respect to the Dirichlet form$$\mathcal {E}$$ E ) on a domain inXwith a prescribed Lipschitz boundary data via a numerical scheme dictated by the approximating Dirichlet forms, which are discrete objects. 
    more » « less
  2. Abstract In the spanning tree congestion problem, given a connected graphG, the objective is to compute a spanning treeTinGthat minimizes its maximum edge congestion, where the congestion of an edgeeofTis the number of edges inGfor which the unique path inTbetween their endpoints traversese. The problem is known to be$$\mathbb{N}\mathbb{P}$$ N P -hard, but its approximability is still poorly understood, and it is not even known whether the optimum solution can be efficiently approximated with ratioo(n). In the decision version of this problem, denoted$${\varvec{K}-\textsf {STC}}$$ K - STC , we need to determine ifGhas a spanning tree with congestion at mostK. It is known that$${\varvec{K}-\textsf {STC}}$$ K - STC is$$\mathbb{N}\mathbb{P}$$ N P -complete for$$K\ge 8$$ K 8 , and this implies a lower bound of 1.125 on the approximation ratio of minimizing congestion. On the other hand,$${\varvec{3}-\textsf {STC}}$$ 3 - STC can be solved in polynomial time, with the complexity status of this problem for$$K\in { \left\{ 4,5,6,7 \right\} }$$ K 4 , 5 , 6 , 7 remaining an open problem. We substantially improve the earlier hardness results by proving that$${\varvec{K}-\textsf {STC}}$$ K - STC is$$\mathbb{N}\mathbb{P}$$ N P -complete for$$K\ge 5$$ K 5 . This leaves only the case$$K=4$$ K = 4 open, and improves the lower bound on the approximation ratio to 1.2. Motivated by evidence that minimizing congestion is hard even for graphs of small constant radius, we also consider$${\varvec{K}-\textsf {STC}}$$ K - STC restricted to graphs of radius 2, and we prove that this variant is$$\mathbb{N}\mathbb{P}$$ N P -complete for all$$K\ge 6$$ K 6
    more » « less
  3. Abstract We propose a new measurement of the ratio of positron-proton to electron-proton elastic scattering at DESY. The purpose is to determine the contributions beyond single-photon exchange, which are essential for the Quantum Electrodynamic (QED) description of the most fundamental process in hadronic physics. By utilizing a 20 cm long liquid hydrogen target in conjunction with the extracted beam from the DESY synchrotron, we can achieve an average luminosity of$$2.12\times 10^{35}$$ 2.12 × 10 35  cm$$^{-2}\cdot $$ - 2 · s$$^{-1}$$ - 1  ($$\approx 200$$ 200 times the luminosity achieved by OLYMPUS). The proposed two-photon exchange experiment (TPEX) entails a commissioning run at a beam energy of 2 GeV, followed by measurements at 3 GeV, thereby providing new data up to$$Q^2=4.6$$ Q 2 = 4.6  (GeV/c)$$^2$$ 2 (twice the range of current measurements). We present and discuss the proposed experimental setup, run plan, and expectations. 
    more » « less
  4. Abstract We report on a measurement of Spin Density Matrix Elements (SDMEs) in hard exclusive$$\rho ^0$$ ρ 0 meson muoproduction at COMPASS using 160 GeV/cpolarised$$ \mu ^{+}$$ μ + and$$ \mu ^{-}$$ μ - beams impinging on a liquid hydrogen target. The measurement covers the kinematic range 5.0 GeV/$$c^2$$ c 2 $$< W<$$ < W < 17.0 GeV/$$c^2$$ c 2 , 1.0 (GeV/c)$$^2$$ 2 $$< Q^2<$$ < Q 2 < 10.0 (GeV/c)$$^2$$ 2 and 0.01 (GeV/c)$$^2$$ 2 $$< p_{\textrm{T}}^2<$$ < p T 2 < 0.5 (GeV/c)$$^2$$ 2 . Here,Wdenotes the mass of the final hadronic system,$$Q^2$$ Q 2 the virtuality of the exchanged photon, and$$p_{\textrm{T}}$$ p T the transverse momentum of the$$\rho ^0$$ ρ 0 meson with respect to the virtual-photon direction. The measured non-zero SDMEs for the transitions of transversely polarised virtual photons to longitudinally polarised vector mesons ($$\gamma ^*_T \rightarrow V^{ }_L$$ γ T V L ) indicate a violation ofs-channel helicity conservation. Additionally, we observe a dominant contribution of natural-parity-exchange transitions and a very small contribution of unnatural-parity-exchange transitions, which is compatible with zero within experimental uncertainties. The results provide important input for modelling Generalised Parton Distributions (GPDs). In particular, they may allow one to evaluate in a model-dependent way the role of parton helicity-flip GPDs in exclusive$$\rho ^0$$ ρ 0 production. 
    more » « less
  5. Abstract LetXbe ann-element point set in thek-dimensional unit cube$$[0,1]^k$$ [ 0 , 1 ] k where$$k \ge 2$$ k 2 . According to an old result of Bollobás and Meir (Oper Res Lett 11:19–21, 1992) , there exists a cycle (tour)$$x_1, x_2, \ldots , x_n$$ x 1 , x 2 , , x n through thenpoints, such that$$\left( \sum _{i=1}^n |x_i - x_{i+1}|^k \right) ^{1/k} \le c_k$$ i = 1 n | x i - x i + 1 | k 1 / k c k , where$$|x-y|$$ | x - y | is the Euclidean distance betweenxandy, and$$c_k$$ c k is an absolute constant that depends only onk, where$$x_{n+1} \equiv x_1$$ x n + 1 x 1 . From the other direction, for every$$k \ge 2$$ k 2 and$$n \ge 2$$ n 2 , there existnpoints in$$[0,1]^k$$ [ 0 , 1 ] k , such that their shortest tour satisfies$$\left( \sum _{i=1}^n |x_i - x_{i+1}|^k \right) ^{1/k} = 2^{1/k} \cdot \sqrt{k}$$ i = 1 n | x i - x i + 1 | k 1 / k = 2 1 / k · k . For the plane, the best constant is$$c_2=2$$ c 2 = 2 and this is the only exact value known. Bollobás and Meir showed that one can take$$c_k = 9 \left( \frac{2}{3} \right) ^{1/k} \cdot \sqrt{k}$$ c k = 9 2 3 1 / k · k for every$$k \ge 3$$ k 3 and conjectured that the best constant is$$c_k = 2^{1/k} \cdot \sqrt{k}$$ c k = 2 1 / k · k , for every$$k \ge 2$$ k 2 . Here we significantly improve the upper bound and show that one can take$$c_k = 3 \sqrt{5} \left( \frac{2}{3} \right) ^{1/k} \cdot \sqrt{k}$$ c k = 3 5 2 3 1 / k · k or$$c_k = 2.91 \sqrt{k} \ (1+o_k(1))$$ c k = 2.91 k ( 1 + o k ( 1 ) ) . Our bounds are constructive. We also show that$$c_3 \ge 2^{7/6}$$ c 3 2 7 / 6 , which disproves the conjecture for$$k=3$$ k = 3 . Connections to matching problems, power assignment problems, related problems, including algorithms, are discussed in this context. A slightly revised version of the Bollobás–Meir conjecture is proposed. 
    more » « less