- Award ID(s):
- 2025954
- PAR ID:
- 10384331
- Date Published:
- Journal Name:
- Ecosystems
- ISSN:
- 1432-9840
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Abstract How aquatic primary productivity influences the carbon (C) sequestering capacity of wetlands is uncertain. We evaluated the magnitude and variability in aquatic C dynamics and compared them to net ecosystem CO 2 exchange (NEE) and ecosystem respiration ( R eco ) rates within calcareous freshwater wetlands in Everglades National Park. We continuously recorded 30-min measurements of dissolved oxygen (DO), water level, water temperature ( T water ), and photosynthetically active radiation (PAR). These measurements were coupled with ecosystem CO 2 fluxes over 5 years (2012–2016) in a long-hydroperiod peat-rich, freshwater marsh and a short-hydroperiod, freshwater marl prairie. Daily net aquatic primary productivity (NAPP) rates indicated both wetlands were generally net heterotrophic. Gross aquatic primary productivity (GAPP) ranged from 0 to − 6.3 g C m −2 day −1 and aquatic respiration ( R Aq ) from 0 to 6.13 g C m −2 day −1 . Nonlinear interactions between water level, T water , and GAPP and R Aq resulted in high variability in NAPP that contributed to NEE. Net aquatic primary productivity accounted for 4–5% of the deviance explained in NEE rates. With respect to the flux magnitude, daily NAPP was a greater proportion of daily NEE at the long-hydroperiod site (mean = 95%) compared to the short-hydroperiod site (mean = 64%). Although we have confirmed the significant contribution of NAPP to NEE in both long- and short-hydroperiod freshwater wetlands, the decoupling of the aquatic and ecosystem fluxes could largely depend on emergent vegetation, the carbonate cycle, and the lateral C flux.more » « less
-
Wetland restoration requires managing long‐term changes in hydroperiod and ecosystem functions. We quantified relationships among spatiotemporal variability in wetland hydrology and total phosphorus (TP) and its stoichiometric relationships with total organic carbon (TOC:TP) and total carbon (TC:TP) and total nitrogen (TN:TP) in water, flocculent organic matter (floc), periphyton, sawgrass (
Cladium jamaicense ), and soil during early phases of freshwater wetland restoration—water year (WY) 2016 (1 May, 2015 to 30 April, 2016) to WY 2019—in Everglades National Park (ENP, Homestead, FL, U.S.A.). Wetland hydroperiod increased by 87 days, following restoration actions and rainfall events that increased median stage in the upstream source canal. Concentrations of TP were highest and most variable at sites closest (<1 km) to canal inputs and upstream wetland sources of legacy P. Surface water TOC:TP and TN:TP ratios were highest in wetlands >1 km downstream of the canal in wet season 2015 with spatial variability reflecting disturbances including droughts, fires, and freeze events. The TP concentrations of flocculent soil surface particles, periphyton, sawgrass, and consolidated soil declined, and TC:TP and TN:TP ratios increased (except soil) logarithmically with downstream distance from the canal. We measured abrupt increases in periphyton (wet season 2018) and sawgrass TP (wet season 2015 and 2018) at sites <1 km from the canal, likely reflecting legacy TP loading. Our results suggest restoration efforts that increase freshwater inflow and hydroperiod will likely change patterns of nutrient concentrations among water and organic matter compartments of wetlands as a function of nutrient legacies. -
null (Ed.)Abstract. Methane (CH4) emissions from natural landscapes constituteroughly half of global CH4 contributions to the atmosphere, yet largeuncertainties remain in the absolute magnitude and the seasonality ofemission quantities and drivers. Eddy covariance (EC) measurements ofCH4 flux are ideal for constraining ecosystem-scale CH4emissions due to quasi-continuous and high-temporal-resolution CH4flux measurements, coincident carbon dioxide, water, and energy fluxmeasurements, lack of ecosystem disturbance, and increased availability ofdatasets over the last decade. Here, we (1) describe the newly publisheddataset, FLUXNET-CH4 Version 1.0, the first open-source global dataset ofCH4 EC measurements (available athttps://fluxnet.org/data/fluxnet-ch4-community-product/, last access: 7 April 2021). FLUXNET-CH4includes half-hourly and daily gap-filled and non-gap-filled aggregatedCH4 fluxes and meteorological data from 79 sites globally: 42freshwater wetlands, 6 brackish and saline wetlands, 7 formerly drainedecosystems, 7 rice paddy sites, 2 lakes, and 15 uplands. Then, we (2) evaluate FLUXNET-CH4 representativeness for freshwater wetland coverageglobally because the majority of sites in FLUXNET-CH4 Version 1.0 arefreshwater wetlands which are a substantial source of total atmosphericCH4 emissions; and (3) we provide the first global estimates of theseasonal variability and seasonality predictors of freshwater wetlandCH4 fluxes. Our representativeness analysis suggests that thefreshwater wetland sites in the dataset cover global wetland bioclimaticattributes (encompassing energy, moisture, and vegetation-relatedparameters) in arctic, boreal, and temperate regions but only sparselycover humid tropical regions. Seasonality metrics of wetland CH4emissions vary considerably across latitudinal bands. In freshwater wetlands(except those between 20∘ S to 20∘ N) the spring onsetof elevated CH4 emissions starts 3 d earlier, and the CH4emission season lasts 4 d longer, for each degree Celsius increase in meanannual air temperature. On average, the spring onset of increasing CH4emissions lags behind soil warming by 1 month, with very few sites experiencingincreased CH4 emissions prior to the onset of soil warming. Incontrast, roughly half of these sites experience the spring onset of risingCH4 emissions prior to the spring increase in gross primaryproductivity (GPP). The timing of peak summer CH4 emissions does notcorrelate with the timing for either peak summer temperature or peak GPP.Our results provide seasonality parameters for CH4 modeling andhighlight seasonality metrics that cannot be predicted by temperature or GPP(i.e., seasonality of CH4 peak). FLUXNET-CH4 is a powerful new resourcefor diagnosing and understanding the role of terrestrial ecosystems andclimate drivers in the global CH4 cycle, and future additions of sitesin tropical ecosystems and site years of data collection will provide addedvalue to this database. All seasonality parameters are available athttps://doi.org/10.5281/zenodo.4672601 (Delwiche et al., 2021).Additionally, raw FLUXNET-CH4 data used to extract seasonality parameterscan be downloaded from https://fluxnet.org/data/fluxnet-ch4-community-product/ (last access: 7 April 2021), and a completelist of the 79 individual site data DOIs is provided in Table 2 of this paper.more » « less
-
Abstract. In the global methane budget, the largest natural sourceis attributed to wetlands, which encompass all ecosystems composed ofwaterlogged or inundated ground, capable of methane production. Among them,northern peatlands that store large amounts of soil organic carbon have beenfunctioning, since the end of the last glaciation period, as long-termsources of methane (CH4) and are one of the most significant methanesources among wetlands. To reduce uncertainty of quantifying methane flux in theglobal methane budget, it is of significance to understand the underlyingprocesses for methane production and fluxes in northern peatlands. A methanemodel that features methane production and transport by plants, ebullitionprocess and diffusion in soil, oxidation to CO2, and CH4 fluxes tothe atmosphere has been embedded in the ORCHIDEE-PEAT land surface modelthat includes an explicit representation of northern peatlands.ORCHIDEE-PCH4 was calibrated and evaluated on 14 peatland sites distributedon both the Eurasian and American continents in the northern boreal andtemperate regions. Data assimilation approaches were employed to optimizedparameters at each site and at all sites simultaneously. Results show thatmethanogenesis is sensitive to temperature and substrate availability overthe top 75 cm of soil depth. Methane emissions estimated using single siteoptimization (SSO) of model parameters are underestimated by 9 g CH4 m−2 yr−1 on average (i.e., 50 % higher than the site average ofyearly methane emissions). While using the multi-site optimization (MSO),methane emissions are overestimated by 5 g CH4 m−2 yr−1 onaverage across all investigated sites (i.e., 37 % lower than the siteaverage of yearly methane emissions).more » « less
-
Abstract Degradation of wetland ecosystems results from loss of hydrologic connectivity, nutrient enrichment, and altered fire regimes, among other factors. It is uncertain how drivers of wetland ecosystem processes and wetland vegetation communities interact in reversing the ecological trajectory from degraded to restored conditions. We analyzed biogeochemical and vegetation data collected in wetlands of the Florida Everglades at the start of (2015) and during (2018 and 2021) the initial stages of rehydration. Our objectives were to analyze the allocation of carbon and nutrients among ecosystem compartments and correlated trajectories of vegetation community change following rehydration, to identify the drivers of change, including fire, and analyze macrophyte species‐specific responses to drivers. We expected to see changes in vegetation toward more hydric communities that would differ based on wetland baseline conditions and the magnitude of the hydrologic change. During the study period, both length of inundation and surface water depth increased throughout wetlands in the region, and four fires occurred, which affected 51% of the sampling locations. We observed biogeochemical shifts in the wetland landscape, driven by both hydrology and fire. Total phosphorus concentrations in soil and flocculent detrital material decreased, while soil carbon:phosphorus and nitrogen:phosphorus mass ratios increased at sites further away from water management infrastructure. Transitions in vegetation communities were driven by an increase in hydroperiods and by the distinct changes in nutrient concentrations or soil stoichiometric ratios in each subregion. The abundance of macrophyte species typical of short‐hydroperiod prairies strongly decreased, while dominant long‐hydroperiod species, such as
Eleocharis cellulosa , expanded. Fire facilitated the expansion of thickly vegetated plumes of invasiveTypha at sites close to the water inflow sources. Overall, restored hydrology shifted vegetation community composition toward higher abundance of long‐hydroperiod species within six years. In contrast, removal of invasive vegetation controlled by soil phosphorus concentrations will likely require long‐term and interactive restoration strategies.