Abstract Urban vegetation experiences multiple natural and human impacts during urbanization, including land conversion, local environmental factors, and human management, which may bring positive or negative impacts on vegetation gross primary productivity (GPP) at multiple scales. In this study, we analyzed the spatial-temporal changes of GPP and three urbanization factors: land urbanization (impervious surface coverage), population urbanization (Population), and economic urbanization Gross domestic product (GDP) at city-district-grid scales in Beijing during 2000–2018. Overall, both GPP and three urbanization factors showed an increased trend. The relationships between GPP and urbanization factors exhibit diverse characteristics at multiple scales: unlike the linear relationship observed at city scale, the relationships at district and grid scales all demonstrated nonlinear relationship, even a U shape between GPP and population/GDP. Furthermore, the positive impact of urbanization on GPP increased and offset the negative impact of land conversion from 9.9% in 2000 to 35% in 2018, indicating that urban management and climate during urbanization effectively promote vegetation photosynthesis and neutralize the negative impact of urban area expansion. Our findings highlight the increased growth offset by urbanization on vegetation and the importance of analysis at a finer scale. Understanding these urbanization types’ impact on vegetation is pivotal in formulating comprehensive strategies that foster sustainable urban development and preserve ecological balance.
more »
« less
Continued Increases of Gross Primary Production in Urban Areas during 2000–2016
Urbanization affects vegetation within city administrative boundary and nearby rural areas. Gross primary production (GPP) of vegetation in global urban areas is one of important metrics for assessing the impacts of urbanization on terrestrial ecosystems. To date, very limited data and information on the spatial-temporal dynamics of GPP in the global urban areas are available. In this study, we reported the spatial distribution and temporal dynamics of annual GPP during 2000–2016 from 8,182 gridcells (0.5° by 0.5° latitude and longitude) that have various proportion of urban areas. Approximately 79.3% of these urban gridcells had increasing trends of annual GPP during 2000-2016. As urban area proportion (%) within individual urban gridcells increased, the means of annual GPP trends also increased. Our results suggested that for those urban gridcells, the negative effect of urban expansion (often measured by impervious surfaces) on GPP was to large degree compensated by increased vegetation within the gridcells, mostly driven by urban management and local climate and environment. Our findings on the continued increases of annual GPP in most of urban gridcells shed new insight on the importance of urban areas on terrestrial carbon cycle and the potential of urban management and local climate and environment on improving vegetation in urban areas.
more »
« less
- Award ID(s):
- 1911955
- PAR ID:
- 10384786
- Date Published:
- Journal Name:
- Journal of Remote Sensing
- Volume:
- 2022
- ISSN:
- 2694-1589
- Page Range / eLocation ID:
- 1 to 14
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Sustaining biodiversity requires measuring the interacting spatial and temporal processes by which environmental factors shape wildlife community assembly. Declines in bird communities due to urban development and changing climate conditions are widely documented. However, the combined impacts of multiple environmental stressors on biodiversity remain unclear, especially in urbanized desert ecosystems. This is largely due to a lack of data at the scales necessary for predicting the consequences of environmental change for diverse species and functional groups, particularly those that provide ecosystem services such as seed dispersal, pest control, and pollination. Trends in the prevalence and diversity of different functional groups contribute to understanding how changes in bird communities impact well‐being through the lens of ecosystem services. Across the rapidly developing drylands of the metropolitan Phoenix, Arizona, USA, we ask the following question: How have inter‐ and intra‐annual landscape changes associated with urbanization and climate shaped the dynamic characteristics of bird communities, specifically the abundance and richness of species and their functional groups? We analyzed long‐term drivers of bird communities by combining a two‐decade, multi‐season spatial dataset of environmental conditions (urbanization, vegetation, temperature, etc.) with biotic data (species richness and abundance) collected seasonally during the same time periods (winter and spring; 2001–2016). Results show that increased impervious surface area and land surface temperature were negatively associated with overall bird abundance and species richness across the study period, especially during winter. However, these relationships varied among functional groups, with potentially mixed outcomes for ecosystem services and disservices provided by urban biodiversity. By improving knowledge of long‐term trends in multiple environmental drivers that shape wildlife community dynamics, these results facilitate effective evaluation of how landscape management practices in drylands influence the outcomes of evolving human‐wildlife relationships.more » « less
-
Abstract China has increased its vegetation coverage and enhanced its terrestrial carbon sink through ecological restoration since the end of the 20th century. However, the temporal variation in vegetation carbon sequestration remains unclear, and the relative effects of climate change and ecological restoration efforts are under debate. By integrating remote sensing and machine learning with a modelling approach, we explored the biological and physical pathways by which both climate change and human activities (e.g., ecological restoration, cropland expansion, and urbanization) have altered Chinese terrestrial ecosystem structures and functions, including vegetation cover, surface heat fluxes, water flux, and vegetation carbon sequestration (defined by gross and net primary production, GPP and NPP). Our study indicated that during 2001–2018, GPP in China increased significantly at a rate of 49.1–53.1 TgC/yr2, and the climatic and anthropogenic contributions to GPP gains were comparable (48%–56% and 44%–52%, respectively). Spatially, afforestation was the dominant mechanism behind forest cover expansions in the farming‐pastoral ecotone in northern China, on the Loess Plateau and in the southwest karst region, whereas climate change promoted vegetation cover in most parts of southeastern China. At the same time, the increasing trend in NPP (22.4–24.9 TgC/yr2) during 2001–2018 was highly attributed to human activities (71%–81%), particularly in southern, eastern, and northeastern China. Both GPP and NPP showed accelerated increases after 2010 because the anthropogenic NPP gains during 2001–2010 were generally offset by the climate‐induced NPP losses in southern China. However, after 2010, the climatic influence reversed, thus highlighting the vegetation carbon sequestration that occurs with ecological restoration.more » « less
-
Cities such as Detroit, MI in the post-industrial Rust Belt region of the United States, have been experiencing a decline in both population and economy since the 1970's. These “shrinking cities” are characterized by aging infrastructure and increasing vacant areas, potentially resulting in more green space. While in growing cities research has demonstrated an “urban heat island” effect resulting from increased temperatures with increased urbanization, little is known about how this may be different if a city shrinks due to urban decline. We hypothesize that the changes associated with shrinking cities will have a measurable impact on their local climatology that is different than in areas experiencing increased urbanization. Here we present our analysis of historical temperature and precipitation records (1900–2020) from weather stations positioned in multiple shrinking cities from within the Rust Belt region of the United States and in growing cities within and outside of this region. Our results suggest that while temperatures are increasing overall, these increases are lower in shrinking cities than those cities that are continuing to experience urban growth. Our analysis also suggests there are differences in precipitation trends between shrinking and growing cities. We also highlight recent climate data in Detroit, MI in the context of these longer-term changes in climatology to support urban planning and management decisions that may influence or be influenced by these trends.more » « less
-
Abstract Data and knowledge of the spatial-temporal dynamics of surface water area (SWA) and terrestrial water storage (TWS) in China are critical for sustainable management of water resources but remain very limited. Here we report annual maps of surface water bodies in China during 1989–2016 at 30m spatial resolution. We find that SWA decreases in water-poor northern China but increases in water-rich southern China during 1989–2016. Our results also reveal the spatial-temporal divergence and consistency between TWS and SWA during 2002–2016. In North China, extensive and continued losses of TWS, together with small to moderate changes of SWA, indicate long-term water stress in the region. Approximately 569 million people live in those areas with deceasing SWA or TWS trends in 2015. Our data set and the findings from this study could be used to support the government and the public to address increasing challenges of water resources and security in China.more » « less
An official website of the United States government

