During 30 September to 9 October 2016, Hurricane Matthew traversed the Caribbean Sea to the east coast of the United States. During its period of greatest intensity, in the central Caribbean, Matthew excited a large number of concentric gravity waves (GWs or CGWs). In this paper, we report on hurricane‐generated CGWs observed in both the stratosphere and mesosphere from spaceborne satellites and in the ionosphere by ground Global Positioning System receivers. We found CGWs with horizontal wavelengths of ~200–300 km in the stratosphere (height of ~30–40 km) and in the airglow layer of the mesopause (height of ~85–90 km), and we found concentric traveling ionospheric disturbances (TIDs or CTIDs) with horizontal wavelengths of ~250–350 km in the ionosphere (height of ~100–400 km). The observed TIDs lasted for more than several hours on 1, 2, and 7 October 2016. We also briefly discuss the vertical and horizontal propagation of the Hurricane Matthew‐induced GWs and TIDs. This study shows that Hurricane Matthew induced significant dynamical coupling between the troposphere and the entire middle and upper atmosphere via GWs. It is the first comprehensive satellite analysis of gravity wave propagation generated by hurricane event from the troposphere through the stratosphere and mesosphere into the ionosphere.
We conducted simulations with a 4‐km resolution for Hurricane Joaquin in 2015 using the weather research and forecast (WRF) model. The model data are used to study stratospheric gravity waves (GWs) generated by the hurricane and how they correlate with hurricane intensity. The simulation results show spiral GWs propagating upward and anticlockwise away from the hurricane center. GWs with vertical wavelengths up to 14 km are generated. We find that GW activity is more frequent and intense during hurricane intensification than during weakening, particularly for the most intense GW activity. There are significant correlations between the change of stratospheric GW intensity and hurricane intensity. Therefore, the emergence of intensive stratospheric GW activity may be considered a useful proxy for identifying hurricane intensification.
more » « less- Award ID(s):
- 1829373
- NSF-PAR ID:
- 10385512
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 49
- Issue:
- 1
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract The present study investigates the effect of the major sudden stratospheric warming (SSW) event of 2009, on the small‐scale gravity wave (GW) activity in the ionosphere. Small‐scale fluctuations with time periods within the range of 10–90 min observed in Global Positioning System total electron content (TEC) data have been used as a proxy for GW activity in the ionosphere. TEC data from five longitudinally separated Global Positioning System stations located around 60∘N latitude have been utilized for this purpose. In the initial phase of the major warming, when the stratospheric conditions are similar to a minor warming during which the mean zonal flow starts to weaken, the ionopsheric GW activity tends to increase. However, during the peak phase of the SSW, as the zonal mean wind starts to reverse its direction, and after the peak warming, as the winds remain weak, conditions are less favorable for upward propagation of a spectrum of GWs, and thus the ionospheric GW activity is reduced, as seen from the behavior of the small‐scale TEC fluctuations during the latter period of the SSW. Similar reduction in GW activity is also observed in the middle atmosphere (65–100 km) as seen from GWs derived from SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) temperature profiles. The reductions in GW activity is more prominent during local daytime as compared to nighttime period. The reduction in GW activity shows a longitudinal variation with some locations showing relatively more reduction in the GW activity as compared to others.
-
Abstract The seasonal and height dependencies of the orographic primary and larger‐scale secondary gravity waves (GWs) have been studied using the temperature profiles measured by Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) from 2002 to 2017. At ~40°S and during Southern Hemisphere winter, there is a strong GW peak over the Andes mountains that extend to
z ~ 55 km. Using wind and topographic data, we show that orographic GWs break above the peak height of the stratospheric jet. Atz ~ 55–65 km, GW breaking and momentum deposition create body forces that generate larger‐scale secondary GWs; we show that these latter GWs form a wide peak above 65 km with a westward tilt. At middle latitudes during summer in the respective hemisphere, orographic GW breaking also generates larger‐scale secondary GWs that propagate to higher altitudes. Both orographic primary and larger‐scale secondary GWs are likely responsible for most of the non‐equatorial peaks of the persistent global distribution of GWs in SABER. -
Abstract A new Cloud Imaging and Particle Size (CIPS) gravity wave (GW) variance data set is available that facilitates automated analysis of GWs entering the mesosphere. This work examines several years of CIPS GW variances from 50 to 55 km in the context of the Arctic and Antarctic polar vortices. CIPS observes highest GW activity in the vortex edge region where horizontal wind speeds are largest, consistent with previously published GW climatologies in the stratosphere and mesosphere. CIPS observes the well‐documented planetary wave (PW)‐1 patterns in GW activity in both hemispheres. In the Northern Hemisphere, maximum GW activity occurs over the North Atlantic and western Europe. In the Southern Hemisphere, maximum GW activity stretches from the Andes over the South Atlantic and Indian Oceans, as expected. In the NH, CIPS GW spatial patterns are highly correlated with horizontal wind speed. In the SH, CIPS GW patterns are less positively correlated with the winds due to increased zonal symmetry and orographic forcing. The Andes Mountains and Antarctic Peninsula, South Georgia Island, Kerguelen/Heard Islands, New Zealand, and Tasmania are persistent sources of orographic GWs. Atmospheric Infrared sounder observations of stratospheric GWs are analyzed alongside CIPS to explore vertical GW coherence and to infer GW propagation and sources. NH midlatitude GW activity is reduced during the January 2021 SSW, as expected. This reduction in GWs leads to a simultaneous reduction in traveling ionospheric disturbances (TIDs), providing more evidence that weak polar vortex events with weak GW activity leads to reduced daytime TID activity.
-
Abstract It is well known that stratospheric sudden warmings (SSWs) are a result of the interaction between planetary waves (PWs) and the stratospheric polar vortex. SSWs occur when breaking PWs slow down or even reverse this zonal wind jet and induce a sinking motion that adiabatically warms the stratosphere and lowers the stratopause. In this paper we characterize this downward progression of stratospheric temperature anomalies using 18 years (2003–2020) of Sounding of the Atmosphere using Broadband Radiometry (SABER) observations. SABER temperatures, derived zonal winds, PW activity and gravity wave (GW) activity during January and February of each year indicate a high‐degree of year‐to‐year variability. From 11 stratospheric warming events (9 major and 2 minor events), the descent rate of the stratopause altitude varies from 0.5 to 2 km/day and the lowest altitude the stratopause descends to varies from <20 to ∼50 km (i.e., no descent). A composite analysis of temperature and squared GW amplitude anomalies indicate that the downward descent of temperature anomalies from 50 to ∼25 km lags the downward progression of increased GW activity. This increased GW activity coincides with the weakening and reversal of the westward zonal winds in agreement with previous studies. Our study suggests that although PWs drive the onset of SSWs at 30 km, GWs also play a role in contributing to the descent of temperature anomalies from the stratopause to the middle and lower stratosphere.