Regional long-term monitoring can enhance the detection of biodiversity declines associated with climate change, improving future projections by reducing reliance on space-for-time substitution and increasing scalability. Rodents are diverse and important consumers in drylands, which cover ~45% of Earth’s land surface and face increasingly drier and more variable climates. Here, we analyzed abundance data for 22 rodent species across grassland, shrubland, ecotone, and woodland habitats in the southwestern USA. We captured two time series: 1995-2006 and 2004-2013 that coincide with phases of the Pacific Decadal Oscillation (PDO), which influences drought in southwestern North America. Regionally, rodent species diversity declined 20-35%, with greater losses during the later time period. Abundance also declined regionally, but only during 2004-2013, with losses of ~5% of animals captured. During the first time series (PDO wet phase), plant productivity outranked climate variables as the best regional predictor of rodent abundance for 70% of taxa, whereas during the second period (dry phase), climate best explained rodent abundance for 60% of taxa. Temporal dynamics in rodent diversity and abundance differed spatially among habitats and sites, with the largest declines in woodlands and shrublands of central New Mexico and Colorado. Both habitat type and phase of the PDO modulated which species were winners or losers under increasing drought and amplified interannual variability in drought. Fewer taxa were significant winners (18%) than losers (30%) under drought, but the identities of winners and losers differed among habitats for 70% of taxa. Our results suggest that the sensitivities of rodent species to climate contributed to regional declines in diversity and abundance during 1995 - 2013. Whether these changes portend future declines in drought-sensitive consumers in the southwestern USA will depend on the climate during the next major phase of the PDO.
more »
« less
Declines in rodent abundance and diversity track regional climate variability in North American drylands
Abstract Regional long‐term monitoring can enhance the detection of biodiversity declines associated with climate change, improving future projections by reducing reliance on space‐for‐time substitution and increasing scalability. Rodents are diverse and important consumers in drylands, regions defined by the scarcity of water that cover 45% of Earth's land surface and face increasingly drier and more variable climates. We analyzed abundance data for 22 rodent species across grassland, shrubland, ecotone, and woodland ecosystems in the southwestern USA. Two time series (1995–2006 and 2004–2013) coincided with phases of the Pacific Decadal Oscillation (PDO), which influences drought in southwestern North America. Regionally, rodent species diversity declined 20%–35%, with greater losses during the later time period. Abundance also declined regionally, but only during 2004–2013, with losses of 5% of animals captured. During the first time series (wetter climate), plant productivity outranked climate variables as the best regional predictor of rodent abundance for 70% of taxa, whereas during the second period (drier climate), climate best explained variation in abundance for 60% of taxa. Temporal dynamics in diversity and abundance differed spatially among ecosystems, with the largest declines in woodlands and shrublands of central New Mexico and Colorado. Which species were winners or losers under increasing drought and amplified interannual variability in drought depended on ecosystem type and the phase of the PDO. Fewer taxa were significant winners (18%) than losers (30%) under drought, but the identities of winners and losers differed among ecosystems for 70% of taxa. Our results suggest that the sensitivities of rodent species to climate contributed to regional declines in diversity and abundance during 1995–2013. Whether these changes portend future declines in drought‐sensitive consumers in the southwestern USA will depend on the climate during the next major PDO cycle.
more »
« less
- PAR ID:
- 10387696
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Global Change Biology
- Volume:
- 27
- Issue:
- 17
- ISSN:
- 1354-1013
- Format(s):
- Medium: X Size: p. 4005-4023
- Size(s):
- p. 4005-4023
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Drought variability is associated with global oceanic and atmospheric teleconnections driven by, among others, the Pacific Decadal Oscillation (PDO), the Atlantic Multidecadal Oscillation (AMO), and El Niño–Southern Oscillation (ENSO). Climate teleconnections with a region’s rainfall, with drought and flooding implications, should be part of short- and long-term water management planning and operations. In this study, the link between drought and climatic drivers was assessed by using historical data from 110 years of regional rainfall in southern Florida and the Everglades. The objective was to evaluate historical drought and its link with global oceanic and atmospheric teleconnections. The Standardized Precipitation Index (SPI) assesses regional historical drought in 3-, 6-, 12-, 24-, 36-, 48-, and 60-month periods. Each of the SPIs was used to analyze the association of different magnitudes of drought with ENSO, AMO, and PDO. Historical drought evaluated in different time windows indicated that there is a wet and dry cycle in the regional hydrology, where the area is currently in the wet phase of the fluctuation since 1995 with some drought years in between. Regional historical rainfall anomaly and drought index relationships with each driver and combination of drivers were statistically evaluated. The impact of ENSO fluctuation is limited to short-period rainfall variability, whereas long-period influence is from AMO and PDO.more » « less
-
Biological nitrogen fixation is a fundamental part of ecosystem functioning. Anthropogenic nitrogen deposition and climate change may, however, limit the competitive advantage of nitrogen-fixing plants, leading to reduced relative diversity of nitrogen-fixing plants. Yet, assessments of changes of nitrogen-fixing plant long-term community diversity are rare. Here, we examine temporal trends in the diversity of nitrogen-fixing plants and their relationships with anthropogenic nitrogen deposition while accounting for changes in temperature and aridity. We used forest-floor vegetation resurveys of temperate forests in Europe and the United States spanning multiple decades. Nitrogen-fixer richness declined as nitrogen deposition increased over time but did not respond to changes in climate. Phylogenetic diversity also declined, as distinct lineages of N-fixers were lost between surveys, but the “winners” and “losers” among nitrogen-fixing lineages varied among study sites, suggesting that losses are context dependent. Anthropogenic nitrogen deposition reduces nitrogen-fixing plant diversity in ways that may strongly affect natural nitrogen fixation.more » « less
-
Abstract The oak (Quercus) species of eastern North America are declining in abundance, threatening the many socioecological benefits they provide. We discuss the mechanisms responsible for their loss, many of which are rooted in the prevailing view that oaks are drought tolerant. We then synthesize previously published data to comprehensively review the drought response strategies of eastern US oaks, concluding that whether or not eastern oaks are drought tolerant depends firmly on the metric of success. Although the anisohydric strategy of oaks sometimes confers a gas exchange and growth advantage, it exposes oaks to damaging hydraulic failure, such that oaks are just as or more likely to perish during drought than neighboring species. Consequently, drought frequency is not a strong predictor of historic patterns of oak abundance, although long-term climate and fire frequency are strongly correlated with declines in oak dominance. The oaks’ ability to survive drought may become increasingly difficult in a drier future.more » « less
-
Abstract The hot deserts of the southwestern United States are experiencing increased frequency, severity, and duration of drought due to anthropogenic climate change. Plant communities in these deserts differ in composition, specifically the abundance of annual and perennial species, which could differentiate responses among these ecosystems to drought. Thus, identifying how these desert plant communities respond to prolonged, severe drought is critical to assess vulnerability to climate change. We measured the response of herbaceous plant communities to 4 years of experimentally imposed severe drought in Chihuahuan, Sonoran, and Mojave Desert sites in the southwestern US.We imposed year‐round passive rain exclusion treatments with a 66% reduction in ambient rainfall for 4 years at two sites in each of the three US hot deserts. We measured plant species composition and abundance in treatment and control plots during the peak growing season.Vegetative cover increased with seasonal precipitation at all six sites. Species richness and evenness varied in response to drought across all sites over the duration of the experiment. At three of the six sites, species richness increased with seasonal precipitation and at three sites species evenness decreased with seasonal precipitation.In general, we found that community structure was linked to seasonal precipitation more so than cumulative drought in these herbaceous communities of southwestern US deserts, and that these desert communities are highly resilient following prolonged, extreme drought.more » « less
An official website of the United States government
