Abstract Low‐temperature thermochronometric data can reveal the long‐term evolution of erosion, uplift, and thrusting in fold‐thrust belts. We present results from central Idaho and southwestern Montana, where the close spatial overlap of the Sevier fold‐thrust belt and Laramide style, basement‐involved foreland uplifts signify a complex region with an unresolved, long‐term tectono‐thermal history. Inverse QTQt thermal history modeling of new zircon (U‐Th)/He (ZHe,n = 106), and apatite (U‐Th)/He dates (AHe,n = 43) collected from hanging walls of major thrusts systems along a central Idaho to southwestern Montana transect, and apatite fission track results from 6 basement samples, reveal regional thermal and spatial trends related to Sevier and Laramide orogenesis. Inverse modeling of foreland basement uplift samples suggest Phanerozoic exhumation initiated as early as ∼80 Ma and continued through the early Paleogene. Inverse modeling of interior Idaho fold‐thrust belt ZHe samples documents Early Cretaceous cooling at ∼125 Ma in the Lost River Range (western transect), and a younger cooling episode in the Lemhi Arch region (mid‐transect) at ∼90–80 Ma through the late Paleogene. This cooling in the Lemhi Arch temporally overlaps with cooling in southwestern Montana's basement‐cored uplifts, which we interpret as roughly synchronous exhumation related to contractional tectonics and post‐orogenic collapse. These data and models, integrated with independent timing constraints from foreland basin strata and previously published thermochronometric results, suggests that middle Cretaceous deformation of southwestern Montana's basement‐cored uplifts was low magnitude and preceded tectonism along the classic Arizona‐Wyoming Laramide “corridor.” In contrast, Late Cretaceous and Paleogene thrust‐related exhumation was more significant and largely complete by the Eocene. The basement‐involved deformation was contemporaneous with and younger than along‐strike Sevier belt thrusting in central Idaho.
more »
« less
Middle Albian provenance, sediment dispersal and foreland basin dynamics in southwestern Montana, North American Cordillera
Abstract The Lower Cretaceous Blackleaf Formation in southwestern Montana records sedimentation in the Idaho‐Montana retroforeland basin of the North American Cordillera. Regional‐scale sedimentology suggests that during Albian time southwestern Montana was partially flooded by an early marine incursion of the Western Interior Seaway during deposition of the Blackleaf Formation. We use sandstone petrography, large‐n(n = 600) U‐Pb detrital zircon geochronology and mixture modelling to determine the provenance of these strata. Our analysis suggests three distinct provenance groups: Group 1 sandstones occur in the eastern region of the study area, are quartz‐rich and have zircon age‐probability peaks of ca. 110, 160, 420–450, 1050 and 1160 Ma; these sandstones match with a primarily Appalachian provenance. Group 2 sandstones occur in the western region of study area, are lithic‐rich and have peaks of ca. 110, 160, 1780, 1840, 1920, 2080 and 2700 Ma; the primary source for these sandstones was exhumed lower‐middle Palaeozoic strata from the Idaho sector of the Sevier belt. Group 3 sandstones occur in the western region of the study area, are lithic‐rich and have prominent peaks of ca. 115, 170, 430, 600, 1085, 1170, 1670 and 1790 Ma; the primary source for these sandstones was exhumed Triassic‐upper Palaeozoic strata from the Idaho sector of the Sevier belt. Our provenance data record a sharp change that coincides with the western shoreline of the seaway, and we infer that it may indicate the position of an irregular, submarine forebulge depozone influenced by dynamic subsidence during a period of reduced thrusting in the adjacent fold‐thrust belt. Albian‐aged sediments in southwestern Montana were delivered by rivers with headwaters in the Sevier belt as well as transcontinental river systems with headwaters in eastern North America. In southwestern Montana, west‐flowing transcontinental fluvial systems were flooded by the Western Interior Seaway as it encroached from the north.
more »
« less
- Award ID(s):
- 1728563
- PAR ID:
- 10387914
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Basin Research
- Volume:
- 34
- Issue:
- 2
- ISSN:
- 0950-091X
- Page Range / eLocation ID:
- p. 913-937
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Middle to Upper Jurassic strata in the Paradox Basin and Central Colorado trough (CCT; southwestern United States) record a pronounced change in sediment dispersal from dominantly aeolian deposition with an Appalachian source (Entrada Sandstone) to dominantly fluvial deposition with a source in the Mogollon and/or Sevier orogenic highlands (Salt Wash Member of the Morrison Formation). An enigmatic abundance of Cambrian (ca. 527–519 Ma) grains at this provenance transition in the CCT at Escalante Canyon, Colorado, was recently suggested to reflect a local sediment source from the Ancestral Front Range, despite previous interpretations that local basement uplifts were largely buried by Middle to Late Jurassic time. This study aims to delineate spatial and temporal patterns in provenance of these Jurassic sandstones containing Cambrian grains within the Paradox Basin and CCT using sandstone petrography, detrital zircon U-Pb geochronology, and detrital zircon trace elemental and rare-earth elemental (REE) geochemistry. We report 7887 new U-Pb detrital zircon analyses from 31 sandstone samples collected within seven transects in western Colorado and eastern Utah. Three clusters of zircon ages are consistently present (1.53–1.3 Ga, 1.3–0.9 Ga, and 500–300 Ma) that are interpreted to reflect sources associated with the Appalachian orogen in southeastern Laurentia (mid-continent, Grenville, Appalachian, and peri-Gondwanan terranes). Ca. 540–500 Ma zircon grains are anomalously abundant locally in the uppermost Entrada Sandstone and Wanakah Formation but are either lacking or present in small fractions in the overlying Salt Wash and Tidwell Members of the Morrison Formation. A comparison of zircon REE geochemistry between Cambrian detrital zircon and igneous zircon from potential sources shows that these 540–500 Ma detrital zircon are primarily magmatic. Although variability in both detrital and igneous REE concentrations precludes definitive identification of provenance, several considerations suggest that distal sources from the Cambrian granitic and rhyolitic provinces of the Southern Oklahoma aulacogen is also likely, in addition to a proximal source identified in the McClure Mountain syenite of the Wet Mountains, Colorado. The abundance of Cambrian grains in samples from the central CCT, particularly in the Entrada Sandstone and Wanakah Formation, suggests northwesterly sediment transport within the CCT, with sediment sourced from Ancestral Rocky Mountains uplifts of the southern Wet Mountains and/or Amarillo-Wichita Mountains in southwestern Oklahoma. The lack of Cambrian grains within the Paradox Basin suggests that the Uncompahgre uplift (southwestern Colorado) acted as a barrier to sediment transport from the CCT.more » « less
-
Abstract Crystalline basement rocks of southwestern Montana have been subjected to multiple tectonothermal events since ∼3.3 Ga: the Paleoproterozoic Big Sky/Great Falls orogeny, Mesoproterozoic extension associated with Belt‐Purcell basin formation, Neoproterozoic extension related to Rodinia rifting, and the late Phanerozoic Sevier‐Laramide orogeny. We investigated the long‐term (>1 Ga), low‐temperature (erosion/burial within 10 km of the surface) thermal histories of these tectonic events with zircon and apatite (U‐Th)/He thermochronology. Data were collected across nine sample localities (n = 55 zircon andn = 26 apatite aliquots) in the northern and southern Madison ranges, the Blacktail‐Snowcrest arch, and the Tobacco Root uplift. Our zircon (U‐Th)/He data show negative trends between single aliquot date and effective uranium (a radiation damage proxy), which we interpreted with a thermal history model that considers the damage‐He diffusivity relationship in zircon. Our model results for these basement ranges show substantial cooling from temperatures above 400°C to near surface conditions between 800 and 510 Ma. Subsequent Phanerozoic exhumation culminated by ∼75 Ma. Late Phanerozoic cooling is coincident with along‐strike Sevier belt thin‐skinned thrusting in southeastern Idaho, and older than exhumation in basement‐involved uplifts of the Wyoming Laramide province. Our long‐term, low‐temperature thermal record for these southwestern Montana basement ranges shows that: (a) these basement blocks have experienced multiple episodes of upper crustal exhumation and burial since Archean time, possibly influencing Phanerozoic thrust architecture and (b) the late Phanerozoic thick‐skinned thrusting recorded by these rocks is among the earliest thermochronologic records of Laramide basement‐involved shortening and was concomitant with Sevier belt thin‐skinned thrusting.more » « less
-
Abstract The Laramide province is characterized by foreland basin partitioning through the growth of basement arches. Although variable along the western U.S. margin, the general consensus is initiation of this structural style by the early Campanian (~80 Ma). This has been linked to flat‐slab subduction beneath western North America, but the extent and cause for a flat slab remain debated, invoking the need for better constraints on the regional variations in timing of Laramide deformation. We present new conglomerate clast composition, sandstone petrographic, and detrital zircon U‐Pb geochronologic data from the Upper Cretaceous Beaverhead Group in southwestern Montana that suggest a pre‐Campanian history of basement‐involved deformation. During the early stages of deposition (~88–83 Ma), two separate depositional systems derived sediment from the Lemhi subbasin and distal thrust sheets to the west as well as Paleozoic strata eroding off the exhuming Blacktail‐Snowcrest arch to the east. Our data provide the first conclusive evidence for the longitudinal transport of gravel via Cordilleran paleorivers connecting sediment sources in east central Idaho to depocenters in southwestern Montana and northwestern Wyoming. Furthermore, erosion of Paleozoic strata by this time requires that the Blacktail‐Snowcrest arch was exhuming prior to ~88 Ma in order to remove the Mesozoic overburden. Later (~73–66 Ma) sediment flux was entirely from the foreland‐propagating fold‐thrust belt to the west. These results suggest that Laramide‐style deformation in southwestern Montana preceded initiation elsewhere along the margin, requiring revision of existing models for Laramide tectonism.more » « less
-
The Upper Cretaceous to Paleocene Yakutat Group contains a flysch unit and a mélange unit with an unknown source terrane. The provenance of detrital zircons may be the key to understanding the age of clastic units, their source terrane, and correlative rocks along the margin. Two samples were collected from remote and difficult to access areas in Glacier Bay National Park, and these samples can be compared to samples from Harlequin Lake, Russell Fiord, and Yakutat Bay to the north. We dated detrital zircons using standard LA-ICPMS methodology. A sample of Yakutat Group flysch (YGf) from the Grand Plateau Glacier is from quartzofeldspathic turbidites adjacent to the Grand Plateau pluton. It has an MDA of ~66 Ma (Maastrichtian-Paleocene), and the grain-age distribution is dominated by a broad mid-Cretaceous population with ages from ~91 to ~114 Ma, it also has a Jurassic component at ~166. A unique attribute of this sample is that 23% of the zircons are Precambrian with a bimodal population at ~1397 Ma and ~1702 Ma. A sample of sandstone from the Yakutat Group mélange (YGm) from Lituya Bay, was collected from an assemblage of dark lithic sandstones interbedded with basalt, and dark-gray bedded chert. This sample has an MDA of ~108 (Albian), and its grain-age distribution is dominated (88%)by Jurassic dates ranging from ~156 to ~188 Ma. Both samples can be correlated to similar dated units in the area in and around Yakutat Bay. The YGf sample is correlative to the primary zircon facies common to arkosic rocks in both the Yakutat Group flysch and mélange, which we refer to as the Russell zircon facies, with an MDA range from 61-72 Ma, and distinctive Precambrian populations. The YGm sample is more complicated, but it appears to belong to the Shelter Cove zircon facies, dominated by mid-Cretaceous lithic sandstones that occur only in the mélange. The Yakutat terrane has been translated along the margin of the Cordillera, and candidate correlative rocks are to the south. We are intrigued that similar facies with similar grain-age distributions occur in the Western Mélange Belt in the North Cascades foothills in WA. We evaluate the correlation and connection between the Yakutat and the WMB and post Paleocene translation of part of this once contiguous unit.more » « less
An official website of the United States government
