Photoelectrochemical (PEC) hydrogen generation is a promising solar energy harvesting technique to address the concerns about the ongoing energy crisis. Antimony selenide (Sb2Se3) with van der Waals‐bonded quasi‐1D (Q1D) nanoribbons, for instance, (Sb4Se6)n, has attracted considerable interest as a light absorber with Earth‐abundant elements, suitable bandgap, and a desired sunlight absorption coefficient. By tuning its anisotropic growth behavior, it is possible to achieve Sb2Se3films with nanostructured morphologies that can improve the light absorption and photogenerated charge carrier separation, eventually boosting the PEC water‐splitting performance. Herein, high‐quality Sb2Se3films with nanorod (NR) array surface morphologies are synthesized by a low‐cost, high‐yield, and scalable close‐spaced sublimation technique. By sputtering a nonprecious and scalable crystalline molybdenum sulfide (MoS2) film as a cocatalyst and a protective layer on Sb2Se3NR arrays, the fabricated core–shell structured MoS2/Sb2Se3NR PEC devices can achieve a photocurrent density as high as −10 mA cm−2at 0 VRHEin a buffered near‐neutral solution (pH 6.5) under a standard simulated air mass 1.5 solar illumination. The scalable manufacturing of nanostructured MoS2/Sb2Se3NR array thin‐film photocathode electrodes for efficient PEC water splitting to generate solar fuel is demonstrated.
more »
« less
Crystal Reconstruction of Mo:BiVO 4 : Improved Charge Transport for Efficient Solar Water Splitting
Abstract A multifaceted Mo:BiVO4(mf‐BVO) photoanode is grown on F‐doped‐SnO2substrates via achemical bath deposition, and the crystal reconstruction process of mf‐BVO is found to boost the charge transport efficiency significantly for photoelectrochemical (PEC) water splitting. The mf‐BVO exhibits columnar grains with an uncommon (121) texture with high‐index facets such as (112), (020), (132), and (204). The texture and high‐index facets facilitate rapid surface melting and grain fusion during thermal annealing, thus leading to crystal reconstructed micron‐sized BVO grains (cr‐BVO). The cr‐BVO has a photocurrent density ≈50 times larger than that of mf‐BVO. The reason is identified as the significantly improved charge transport efficiency resulting from the dopant activation (increased carrier concentration) and bulky grains (fewer defects). Additionally, the cr‐BVO exhibits improved photocorrosion resistance compared to the nanoparticle‐based BVO. After coating the oxygen evolution catalyst, the photocurrent density of cr‐BVO is further increased to 4.4 mA cm−2for water oxidation reaction at 1.23 V versus the reversible hydrogen electrode, maintaining a high and stable faradaic efficiency of over 88% for 24 h. These results demonstrate that crystal reconstruction is a facile and effective pathway to improve the charge transport efficiency, opening a new avenue for developing efficient photoelectrodes for PEC water splitting.
more »
« less
- Award ID(s):
- 2029425
- PAR ID:
- 10388262
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 32
- Issue:
- 52
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Single-particle-type suspension reactors and other membrane-free reactor designs for photoelectrochemical (PEC) water splitting, although promising for low-cost H2 production, suffer the drawback of H2 and O2 co-evolution leading to product losses through back reactions. These back reactions need to be minimized to increase the solar-to-hydrogen (STH) efficiency. H2/O2 co-evolution also raises safety considerations, and a large-scale facility should maintain the H2 concentration below the lower flammability limit with O2 to eliminate explosion hazards. Herein, inert gas bubbling through the electrolyte was investigated with a tandem semiconductor for light-driven PEC water splitting without applied electrical bias as a technique to mitigate back reactions and maintain the output H2 safely below the lower flammability limit during co-evolution. A planar structure of nanoparticulate-Pt/Ni/np+-Si/FTO/TiO2 was fabricated into both wired-electrode and fully integrated configurations capable of unassisted solar water splitting, though additional UV bias increased the current density and gas production rates. The device was characterized in aqueous electrolyte from alkaline to neutral conditions to balance water-splitting activity and durability against corrosion, displaying strong stability in a pH 11 buffer solution. Moreover, the H2 faradaic efficiency was increased from 59% without bubbling to > 98% using inert carrier gas to increase the mass transfer of products to the gas phase. Integrated tandem photoelectrode performance indicated a tradeoff in bubbling flow rate between decreased back reactions and decreased light absorption due to bubble reflectance.more » « less
-
Abstract Significant optical absorption in the blue–green spectral range, high intralayer carrier mobility, and band alignment suitable for water splitting suggest tin disulfide (SnS2) as a candidate material for photo‐electrochemical applications. In this work, vertically aligned SnS2nanoflakes are synthesized directly on transparent conductive substrates using a scalable close space sublimation (CSS) method. Detailed characterization by time‐resolved terahertz and time‐resolved photoluminescence spectroscopies reveals a high intrinsic carrier mobility of 330 cm2V−1s−1and photoexcited carrier lifetimes of 1.3 ns in these nanoflakes, resulting in a long vertical diffusion length of ≈1 µm. The highest photo‐electrochemical performance is achieved by growing SnS2nanoflakes with heights that are between this diffusion length and the optical absorption depth of ≈2 µm, which balances the competing requirements of charge transport and light absorption. Moreover, the unique stepped morphology of these CSS‐grown nanoflakes improves photocurrent by exposing multiple edge sites in every nanoflake. The optimized vertical SnS2nanoflake photoanodes produce record photocurrents of 4.5 mA cm−2for oxidation of a sulfite hole scavenger and 2.6 mA cm−2for water oxidation without any hole scavenger, both at 1.23 VRHEin neutral electrolyte under simulated AM1.5G sunlight, and stable photocurrents for iodide oxidation in acidic electrolyte.more » « less
-
Abstract Metal‐Organic Frameworks (MOFs) recently emerged as a new platform for the realization of integrated devices for artificial photosynthesis. However, there remain few demonstrations of rational tuning of such devices for improved performance. Here, a fast molecular water oxidation catalyst working via water nucleophilic attack is integrated into the MOF MIL‐142, wherein Fe3O nodes absorb visible light, leading to charge separation. Materials are characterized by a range of structural and spectroscopic techniques. New, [Ru(tpy)(Qc)(H2O)]+(tpy = 2,2′:6′,2″‐terpyridine and Qc = 8‐quinolinecarboxylate)‐doped Fe MIL‐142 achieved a high photocurrent (1.6 × 10−3A·cm−2) in photo‐electrocatalytic water splitting at pH = 1. Unassisted photocatalytic H2evolution is also reported with Pt as the co‐catalyst (4.8 µmol g−1min−1). The high activity of this new system enables hydrogen gas capture from an easy‐to‐manufacture, scaled‐up prototype utilizing MOF deposited on FTO glass as a photoanode. These findings provide insights for the development of MOF‐based light‐driven water‐splitting assemblies utilizing a minimal amount of precious metals and Fe‐based photosensitizers.more » « less
-
Photoelectrochemical (PEC) water splitting is a promising technology for green hydrogen production by harnessing solar energy. Traditionally, this sustainable approach is studied under light intensity of 100 mW/cm2mimicking the natural solar irradiation at the Earth’s surface. Sunlight can be easily concentrated using simple optical systems like Fresnel lens to enhance charge carrier generation and hydrogen production in PEC water splitting. Despite the great potentials, this strategy has not been extensively studied and faces challenges related to the stability of photoelectrodes. To prompt the investigations and applications, this work outlines the best practices and protocols for conducting PEC solar water splitting under concentrated sunlight illumination, incorporating our recent advancements and providing some experimental guidelines. The key factors such as light source calibration, photoelectrode preparation, PEC cell configuration, and long-term stability test are discussed to ensure reproducible and high performance. Additionally, the challenges of the expected photothermal effect and the heat energy utilization strategy are discussed.more » « less
An official website of the United States government
