Neuromorphic systems, which emulate neural functionalities of a human brain, are considered to be an attractive next‐generation computing approach, with advantages of high energy efficiency and fast computing speed. After these neuromorphic systems are proposed, it is demonstrated that artificial synapses and neurons can mimic neural functions of biological synapses and neurons. However, since the neuromorphic functionalities are highly related to the surface properties of materials, bulk material‐based neuromorphic devices suffer from uncontrollable defects at surfaces and strong scattering caused by dangling bonds. Therefore, 2D materials which have dangling‐bond‐free surfaces and excellent crystallinity have emerged as promising candidates for neuromorphic computing hardware. First, the fundamental synaptic behavior is reviewed, such as synaptic plasticity and learning rule, and requirements of artificial synapses to emulate biological synapses. In addition, an overview of recent advances on 2D materials‐based synaptic devices is summarized by categorizing these into various working principles of artificial synapses. Second, the compulsory behavior and requirements of artificial neurons such as the all‐or‐nothing law and refractory periods to simulate a spike neural network are described, and the implementation of 2D materials‐based artificial neurons to date is reviewed. Finally, future challenges and outlooks of 2D materials‐based neuromorphic devices are discussed.
- NSF-PAR ID:
- 10388514
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Memristors for neuromorphic computing have gained prominence over the years for implementing synapses and neurons due to their nano-scale footprint and reduced complexity. Several demonstrations show two-dimensional (2D) materials as a promising platform for the realization of transparent, flexible, ultra-thin memristive synapses. However, unsupervised learning in a spiking neural network (SNN) facilitated by linearity and symmetry in synaptic weight update has not been explored thoroughly using the 2D materials platform. Here, we demonstrate that graphene/MoS2/SiOx/Ni synapses exhibit ideal linearity and symmetry when subjected to identical input pulses, which is essential for their role in online training of neural networks. The linearity in weight update holds for a range of pulse width, amplitude and number of applied pulses. Our work illustrates that the mechanism of switching in MoS2-based synapses is through conductive filaments governed by Poole-Frenkel emission. We demonstrate that the graphene/MoS2/SiOx/Ni synapses, when integrated with a MoS2-based leaky integrate-and-fire neuron, can control the spiking of the neuron efficiently. This work establishes 2D MoS2as a viable platform for all-memristive SNNs.
-
Abstract Bayesian networks (BNs) find widespread application in many real-world probabilistic problems including diagnostics, forecasting, computer vision, etc. The basic computing primitive for BNs is a stochastic bit (s-bit) generator that can control the probability of obtaining ‘1’ in a binary bit-stream. While silicon-based complementary metal-oxide-semiconductor (CMOS) technology can be used for hardware implementation of BNs, the lack of inherent stochasticity makes it area and energy inefficient. On the other hand, memristors and spintronic devices offer inherent stochasticity but lack computing ability beyond simple vector matrix multiplication due to their two-terminal nature and rely on extensive CMOS peripherals for BN implementation, which limits area and energy efficiency. Here, we circumvent these challenges by introducing a hardware platform based on 2D memtransistors. First, we experimentally demonstrate a low-power and compact s-bit generator circuit that exploits cycle-to-cycle fluctuation in the post-programmed conductance state of 2D memtransistors. Next, the s-bit generators are monolithically integrated with 2D memtransistor-based logic gates to implement BNs. Our findings highlight the potential for 2D memtransistor-based integrated circuits for non-von Neumann computing applications.more » « less
-
Ruslan Salakhutdinov (Ed.)This paper develops simple feed-forward neural networks that achieve the universal approximation property for all continuous functions with a fixed finite number of neurons. These neural networks are simple because they are designed with a simple and computable continuous activation function $\sigma$ leveraging a triangular-wave function and a softsign function. We prove that $\sigma$-activated networks with width $36d(2d+1)$ and depth $11$ can approximate any continuous function on a $d$-dimensional hypercube within an arbitrarily small error. Hence, for supervised learning and its related regression problems, the hypothesis space generated by these networks with a size not smaller than $36d(2d+1)\times 11$ is dense in the space of continuous functions. Furthermore, classification functions arising from image and signal classification are in the hypothesis space generated by $\sigma$-activated networks with width $36d(2d+1)$ and depth $12$, when there exist pairwise disjoint closed bounded subsets of $\mathbb{R}^d$ such that the samples of the same class are located in the same subset.more » « less
-
Implementing scalable and effective synaptic networks will enable neuromorphic computing to deliver on its promise of revolutionizing computing. RRAM represents the most promising technology for realizing the fully connected synapse network: By using programmable resistive elements as weights, RRAM can modulate the strength of synapses in a neural network architecture. Oscillatory Neural Networks (ONNs) that are based on phase-locked loop (PLL) neurons are compatible with the resistive synapses but otherwise rather impractical. In this paper, A PLL-free ONN is implemented in 28 nm CMOS and compared to its PLL-based counterpart. Our silicon results show that the PLL-free architecture is compatible with resistive synapses, addresses practical implementation issues for improved robustness, and demonstrates favorable energy consumption compared to state-of-the-art NNs.more » « less