skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Applications of conceptual models from lifecourse epidemiology in ecology and evolutionary biology
In ecology and evolutionary biology (EEB), the study of developmental plasticity seeks to understand ontogenetic processes underlying the phenotypes upon which natural selection acts. A central challenge to this inquiry is ascertaining a causal effect of the exposure on the manifestation of later-life phenotype due to the time elapsed between the two events. The exposure is a potential cause of the outcome—i.e. an environmental stimulus or experience. The later phenotype might be a behaviour, physiological condition, morphology or life-history trait. The latency period between the exposure and outcome complicates causal inference due to the inevitable occurrence of additional events that may affect the relationship of interest. Here, we describe six distinct but non-mutually exclusive conceptual models from the field of lifecourse epidemiology and discuss their applications to EEB research. The models include Critical Period with No Later Modifiers, Critical Period with Later Modifiers, Accumulation of Risk with Independent Risk Exposures, Accumulation of Risk with Risk Clustering, Accumulation of Risk with Chains of Risk and Accumulation of Risk with Trigger Effect. These models, which have been widely used to test causal hypotheses regarding the early origins of adult-onset disease in humans, are directly relevant to research on developmental plasticity in EEB.  more » « less
Award ID(s):
1755089 2010607 1701384
PAR ID:
10388675
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Biology Letters
Volume:
18
Issue:
7
ISSN:
1744-957X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Development can play a critical role in how organisms respond to changes in the environment. Tolerance to environmental challenges can vary during ontogeny, with individual- and population-level impacts that are associated with the timing of exposure relative to the timing of vulnerability. In addition, the life history consequences of different stressors can vary with the timing of exposure to stress. Salinization of freshwater ecosystems is an emerging environmental concern, and habitat salinity can change rapidly due, for example, to storm surge, runoff of road deicing salts, and rainfall. Elevated salinity can increase the demands of osmoregulation in freshwater organisms, and amphibians are particularly at risk due to their permeable skin and, in many species, semi-aquatic life cycle. In three experiments, we manipulated timing and duration of exposure to elevated salinity during larval development of southern toad (Anaxyrus terrestris) tadpoles and examined effects on survival, larval growth, and timing of and size at metamorphosis. Survival was reduced only for tadpoles exposed to elevated salinity early in development, suggesting an increase in tolerance as development proceeds; however, we found no evidence of acclimation to elevated salinity. Two forms of developmental plasticity may help to ameliorate costs of transient salinity exposure. With early salinity exposure, the return to freshwater was accompanied by a period of rapid compensatory growth, and metamorphosis ultimately occurred at a similar age and size as freshwater controls. By contrast, salinity exposure later in development led to earlier metamorphosis at reduced size, indicating an acceleration of metamorphosis as a mechanism to escape salinity stress. Thus, the consequences of transient salinity exposure were complex and were mediated by developmental state. Salinity stress experienced early in development resulted in acute costs but little long-lasting effect on survivors, while exposures later in development resulted in sublethal effects that could influence success in subsequent life stages. Overall, our results suggest that elevated salinity is more likely to affect southern toad larvae when experienced early during larval development, but even brief sublethal exposure later in development can alter life history in ways that may impact fitness. 
    more » « less
  2. Developmental plasticity can occur at any life stage, but plasticity that acts early in development may give individuals a competitive edge later in life. Here, we asked if early (pre-feeding) exposure to a nutrient-rich resource impacts hatchling morphology in Mexican spadefoot toad tadpoles, Spea multiplicata . A distinctive carnivore morph can be induced when tadpoles eat live fairy shrimp. We investigated whether cues from shrimp––detected before individuals are capable of feeding––alter hatchling morphology such that individuals could potentially take advantage of this nutritious resource once they begin feeding. We found that hatchlings with early developmental exposure to shrimp were larger and had larger jaw muscles––traits that, at later stages, increase a tadpole's competitive ability for shrimp. These results suggest that early developmental stages can assess and respond to environmental cues by producing resource-use phenotypes appropriate for future conditions. Such anticipatory plasticity may be an important but understudied form of developmental plasticity. 
    more » « less
  3. Abstract Investigating the causal relationship between exposure and time-to-event outcome is an important topic in biomedical research. Previous literature has discussed the potential issues of using hazard ratio (HR) as the marginal causal effect measure due to noncollapsibility. In this article, we advocate using restricted mean survival time (RMST) difference as a marginal causal effect measure, which is collapsible and has a simple interpretation as the difference of area under survival curves over a certain time horizon. To address both measured and unmeasured confounding, a matched design with sensitivity analysis is proposed. Matching is used to pair similar treated and untreated subjects together, which is generally more robust than outcome modeling due to potential misspecifications. Our propensity score matched RMST difference estimator is shown to be asymptotically unbiased, and the corresponding variance estimator is calculated by accounting for the correlation due to matching. Simulation studies also demonstrate that our method has adequate empirical performance and outperforms several competing methods used in practice. To assess the impact of unmeasured confounding, we develop a sensitivity analysis strategy by adapting the E -value approach to matched data. We apply the proposed method to the Atherosclerosis Risk in Communities Study (ARIC) to examine the causal effect of smoking on stroke-free survival. 
    more » « less
  4. ABSTRACT Developing animals display a tremendous ability to change the course of their developmental path in response to the environment they experience, a concept referred to as developmental plasticity. This change in behavior, physiology or cellular processes is primarily thought to allow animals to better accommodate themselves to the surrounding environment. However, existing data on developmental stress and whether it brings about beneficial or detrimental outcomes show conflicting results. There are several well-referred hypotheses related to developmental stress in the current literature, such as the environmental matching, silver spoon and thrifty phenotype hypotheses. These hypotheses speculate that the early-life environment defines the capacity of the physiological functions and behavioral tendencies and that this change is permanent and impacts the fitness of the individual. These hypotheses also postulate there is a trade-off among organ systems and physiological functions when resources are insufficient. Published data on avian taxa show that some effects of developmental nutritional and thermal stressors are long lasting, such as the effects on body mass and birdsong. Although hypotheses on developmental stress are based on fitness components, data on reproduction and survival are scarce, making it difficult to determine which hypothesis these data support. Furthermore, most physiological and performance measures are collected only once; thus, the physiological mechanisms remain undertested. Here, we offer potential avenues of research to identify reasons behind the contrasting results in developmental stress research and possible ways to determine whether developmental programming due to stressors is beneficial or detrimental, including quantifying reproduction and survival in multiple environments, measuring temporal changes in physiological variables and testing for stress resistance later in life. 
    more » « less
  5. ABSTRACT Environmental challenges early in development can result in complex phenotypic trade-offs and long-term effects on individual physiology, performance and behavior, with implications for disease and predation risk. We examined the effects of simulated pond drying and elevated water temperatures on development, growth, thermal physiology and behavior in a North American amphibian, Rana sphenocephala. Tadpoles were raised in outdoor mesocosms under warming and drying regimes based on projected climatic conditions in 2070. We predicted that amphibians experiencing the rapid pond drying and elevated pond temperatures associated with climate change would accelerate development, be smaller at metamorphosis and demonstrate long-term differences in physiology and exploratory behavior post-metamorphosis. Although both drying and warming accelerated development and reduced survival to metamorphosis, only drying resulted in smaller animals at metamorphosis. Around 1 month post-metamorphosis, animals from the control treatment jumped relatively farther at high temperatures in jumping trials. In addition, across all treatments, frogs with shorter larval periods had lower critical thermal minima and maxima. We also found that developing under warming and drying resulted in a less exploratory behavioral phenotype, and that drying resulted in higher selected temperatures in a thermal gradient. Furthermore, behavior predicted thermal preference, with less exploratory animals selecting higher temperatures. Our results underscore the multi-faceted effects of early developmental environments on behavioral and physiological phenotypes later in life. Thermal preference can influence disease risk through behavioral thermoregulation, and exploratory behavior may increase risk of predation or pathogen encounter. Thus, climatic stressors during development may mediate amphibian exposure and susceptibility to predators and pathogens into later life stages. 
    more » « less