People make subjective judgments about the healthiness of different foods every day, and these judgments in turn influence their food choices and health outcomes. Despite the importance of such judgments, there are few quantitative theories about their psychological underpinnings. This article introduces a novel computational approach that can approximate people’s knowledge representations for thousands of common foods. We used these representations to predict how both lay decision-makers (the general population) and experts judge the healthiness of individual foods. We also applied our method to predict the impact of behavioral interventions, such as the provision of front-of-pack nutrient and calorie information. Across multiple studies with data from 846 adults, our models achieved very high accuracy rates ( r 2 = .65–.77) and significantly outperformed competing models based on factual nutritional content. These results illustrate how new computational methods applied to established psychological theory can be used to better predict, understand, and influence health behavior.
more »
« less
Forewarning Postprandial Hyperglycemia with Interpretations using Machine Learning
Postprandial hyperglycemia (PPHG) is detrimental to health and increases risk of cardiovascular diseases, reduced eyesight, and life-threatening conditions like cancer. Detecting PPHG events before they occur can potentially help with providing early interventions. Prior research suggests that PPHG events can be predicted based on information about diet. However, such computational approaches (1) are data hungry requiring significant amounts of data for algorithm training; and (2) work as a black-box and lack interpretability, thus limiting the adoption of these technologies for use in clinical interventions. Motivated by these shortcomings, we propose, DietNudge 1 , a machine learning based framework that integrates multi-modal data about diet, insulin, and blood glucose to predict PPHG events before they occur. Using data from patients with diabetes, we demonstrate that our model can predict PPHG events with up to 90% classification accuracy and an average F1 score of 0.93. The proposed decision-tree-based approach also identifies modifiable factors that contribute to an impending PPHG event while providing personalized thresholds to prevent such events. Our results suggest that we can develop simple, yet effective, computational algorithms that can be used as preventative mechanisms for diabetes and obesity management.
more »
« less
- PAR ID:
- 10389471
- Date Published:
- Journal Name:
- 2022 IEEE-EMBS International Conference on Wearable and Implantable Body Sensor Networks (BSN)
- Page Range / eLocation ID:
- 1 to 4
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Diet monitoring is an important component of interventions in type 2 diabetes, but is time intensive and often inaccurate. To address this issue, we describe an approach to monitor diet automatically, by analyzing fluctuations in glucose after a meal is consumed. In particular, we evaluate three standardization techniques (baseline correction, feature normalization, and model personalization) that can be used to compensate for the large individual differences that exist in food metabolism. Then, we build machine learning models to predict the amounts of macronutrients in a meal from the associated glucose responses. We evaluate the approach on a dataset containing glucose responses for 15 participants who consumed 9 meals. Three techniques improve the accuracy of the models: subtracting the baseline glucose, performing z-score normalization, and scaling the amount of macronutrients by each individuals’ body mass index.more » « less
-
Undergraduates enrolled in large, active learning courses must self-regulate their learning (self-regulated learning [SRL]) by appraising tasks, making plans, setting goals, and enacting and monitoring strategies. SRL researchers have relied on self-report and learner-mediated methods during academic tasks studied in laboratories and now collect digital event data when learners engage with technology-based tools in classrooms. Inferring SRL processes from digital events and testing their validity is challenging. We aligned digital and verbal SRL event data to validate digital events as traces of SRL and used them to predict achievement in lab and course settings. In Study 1, we sampled a learning task from a biology course into a laboratory setting. Enrolled students (N = 48) completed the lesson using digital resources (e.g., online textbook, course site) while thinking aloud weeks before it was taught in class. Analyses confirmed that 10 digital events reliably co-occurred ≥70% of the time with verbalized task definition and strategy use macroprocesses. Some digital events co-occurred with multiple verbalized SRL macroprocesses. Variance in occurrence of validated digital events was limited in lab sessions, and they explained statistically nonsignificant variance in learners’ performance on lesson quizzes. In Study 2, lesson-specific digital event data from learners (N = 307) enrolled in the course (but not in Study 1) predicted performance on lesson-specific exam items, final exams, and course grades. Validated digital events also predicted final exam and course grades in the next semester (N = 432). Digital events can be validated to reflect SRL processes and scaled to explain achievement in naturalistic undergraduate education settings. Educational Impact and Implications Statement Instructors often have difficulty identifying and helping struggling students in courses with hundreds of students. Digital trace data can be used to efficiently and effectively identify struggling students in these large courses, but such data are often difficult to interpret with confidence. In our study, we found that using verbal trace data to augment and validate our inferences about the meaning of digital trace data resulted in a powerful set of predictors of students’ achievement. These validated digital trace data can be used to not only identify students in need of support in large classes, but also to understand how to target interventions to the aspects of learning that are causing students the most difficulty.more » « less
-
Diabetes management requires constant monitoring and individualized adjustments. This study proposes a novel approach that leverages digital twins and personal health knowledge graphs (PHKGs) to revolutionize diabetes care. Our key contribution lies in developing a real-time, patient-centric digital twin framework built on PHKGs. This framework integrates data from diverse sources, adhering to HL7 standards and enabling seamless information access and exchange while ensuring high levels of accuracy in data representation and health insights. PHKGs offer a flexible and efficient format that supports various applications. As new knowledge about the patient becomes available, the PHKG can be easily extended to incorporate it, enhancing the precision and accuracy of the care provided. This dynamic approach fosters continuous improvement and facilitates the development of new applications. As a proof of concept, we have demonstrated the versatility of our digital twins by applying it to different use cases in diabetes management. These include predicting glucose levels, optimizing insulin dosage, providing personalized lifestyle recommendations, and visualizing health data. By enabling real-time, patient-specific care, this research paves the way for more precise and personalized healthcare interventions, potentially improving long-term diabetes management outcomes.more » « less
-
Abstract We developed a model to compare the impacts of different lifestyle interventions among prediabetes individuals and to identify the optimal age groups for such interventions. A stochastic simulation was developed to replicate the prediabetes and diabetes trends (1997–2010) in the U.S. adult population. We then simulated the population-wide impacts of three lifestyle diabetes prevention programs, i.e., the Diabetes Prevention Program (DPP), DPP-YMCA, and the Healthy Living Partnerships to Prevent Diabetes (HELP-PD), over a course of 10, 15 and 30 years. Our model replicated the temporal trends of diabetes in the U.S. adult population. Compared to no intervention, the diabetes incidence declined 0.3 per 1,000 by DPP, 0.2 by DPP-YMCA, and 0.4 by HELP-PD over the 15-year period. Our simulations identified HELP-PD as the most cost-effective intervention, which achieved the highest 10-year savings of $38 billion for those aged 25–65, assuming all eligible individuals participate in the intervention and considering intervention achievement rates. Our model simulates the diabetes trends in the U.S. population based on individual-level longitudinal data. However, it may be used to identify the optimal intervention for different subgroups in defined populations.more » « less
An official website of the United States government

