Each year a growing number of wind farms are being added to power grids to generate sustainable energy. The power curve of a wind turbine, which exhibits the relationship between generated power and wind speed, plays a major role in assessing the performance of a wind farm. Neural networks have been used for power curve estimation. However, they do not produce a confidence measure for their output, unless computationally prohibitive Bayesian methods are used. In this paper, a probabilistic neural network with Monte Carlo dropout is considered to quantify the model or epistemic uncertainty of the power curve estimation. This approach offers a minimal increase in computational complexity and thus evaluation time. Furthermore, by adding a probabilistic loss function, the noise or aleatoric uncertainty in the data is estimated. The developed network captures both model and noise uncertainty which are found to be useful tools in assessing performance. Also, the developed network is compared with the existing ones across a public domain dataset showing superior performance in terms of prediction accuracy. The results obtained indicate that the developed network provides the quantification of uncertainty while maintaining accurate power estimation. 
                        more » 
                        « less   
                    
                            
                            Drifting Streaming Peaks-over-Threshold-Enhanced Self-Evolving Neural Networks for Short-Term Wind Farm Generation Forecast
                        
                    
    
            This paper investigates the short-term wind farm generation forecast. It is observed from the real wind farm generation measurements that wind farm generation exhibits distinct features, such as the non-stationarity and the heterogeneous dynamics of ramp and non-ramp events across different classes of wind turbines. To account for the distinct features of wind farm generation, we propose a Drifting Streaming Peaks-over-Threshold (DSPOT)-enhanced self-evolving neural networks-based short-term wind farm generation forecast. Using DSPOT, the proposed method first classifies the wind farm generation data into ramp and non-ramp datasets, where time-varying dynamics are taken into account by utilizing dynamic ramp thresholds to separate the ramp and non-ramp events. We then train different neural networks based on each dataset to learn the different dynamics of wind farm generation by the NeuroEvolution of Augmenting Topologies (NEAT), which can obtain the best network topology and weighting parameters. As the efficacy of the neural networks relies on the quality of the training datasets (i.e., the classification accuracy of the ramp and non-ramp events), a Bayesian optimization-based approach is developed to optimize the parameters of DSPOT to enhance the quality of the training datasets and the corresponding performance of the neural networks. Based on the developed self-evolving neural networks, both distributional and point forecasts are developed. The experimental results show that compared with other forecast approaches, the proposed forecast approach can substantially improve the forecast accuracy, especially for ramp events. The experiment results indicate that the accuracy improvement in a 60 min horizon forecast in terms of the mean absolute error (MAE) is at least 33.6% for the whole year data and at least 37% for the ramp events. Moreover, the distributional forecast in terms of the continuous rank probability score (CRPS) is improved by at least 35.8% for the whole year data and at least 35.2% for the ramp events. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10389652
- Date Published:
- Journal Name:
- Future Internet
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 1999-5903
- Page Range / eLocation ID:
- 17
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Abstract. We investigate techniques for using deep neural networks to produce surrogatemodels for short-term climate forecasts. A convolutional neural network istrained on 97 years of monthly precipitation output from the 1pctCO2 run (theCO2 concentration increases by 1 % per year) simulated by the second-generation Canadian Earth System Model (CanESM2). The neural network clearly outperforms a persistence forecast anddoes not show substantially degraded performance even when the forecast lengthis extended to 120 months. The model is prone to underpredicting precipitationin areas characterized by intense precipitation events. Scheduled sampling(forcing the model to gradually use its own past predictions rather than groundtruth) is essential for avoiding amplification of early forecasting errors.However, the use of scheduled sampling also necessitates preforecasting(generating forecasts prior to the first forecast date) to obtain adequateperformance for the first few prediction time steps. We document the trainingprocedures and hyperparameter optimization process for researchers who wish toextend the use of neural networks in developing surrogate models.more » « less
- 
            Solar energy is now the cheapest form of electricity in history. Unfortunately, significantly increasing the electric grid's fraction of solar energy remains challenging due to its variability, which makes balancing electricity's supply and demand more difficult. While thermal generators' ramp rate---the maximum rate at which they can change their energy generation---is finite, solar energy's ramp rate is essentially infinite. Thus, accurate near-term solar forecasting, or nowcasting, is important to provide advance warnings to adjust thermal generator output in response to variations in solar generation to ensure a balanced supply and demand. To address the problem, this paper develops a general model for solar nowcasting from abundant and readily available multispectral satellite data using self-supervised learning. Specifically, we develop deep auto-regressive models using convolutional neural networks (CNN) and long short-term memory networks (LSTM) that are globally trained across multiple locations to predict raw future observations of the spatio-temporal spectral data collected by the recently launched GOES-R series of satellites. Our model estimates a location's near-term future solar irradiance based on satellite observations, which we feed to a regression model trained on smaller site-specific solar data to provide near-term solar photovoltaic (PV) forecasts that account for site-specific characteristics. We evaluate our approach for different coverage areas and forecast horizons across 25 solar sites and show that it yields errors close to that of a model using ground-truth observations.more » « less
- 
            Abstract A simple and efficient Bayesian machine learning (BML) training algorithm, which exploits only a 20‐year short observational time series and an approximate prior model, is developed to predict the Niño 3 sea surface temperature (SST) index. The BML forecast significantly outperforms model‐based ensemble predictions and standard machine learning forecasts. Even with a simple feedforward neural network (NN), the BML forecast is skillful for 9.5 months. Remarkably, the BML forecast overcomes the spring predictability barrier to a large extent: the forecast starting from spring remains skillful for nearly 10 months. The BML algorithm can also effectively utilize multiscale features: the BML forecast of SST using SST, thermocline, and windburst improves on the BML forecast using just SST by at least 2 months. Finally, the BML algorithm also reduces the forecast uncertainty of NNs and is robust to input perturbations.more » « less
- 
            Low-fidelity engineering wake models are often combined with linear superposition laws to predict wake velocities across wind farms under steady atmospheric conditions. While convenient for wind farm planning and long-term performance evaluation, such models are unable to capture the time-varying nature of the waked velocity field, as they are agnostic to the complex aerodynamic interactions among wind turbines and the effects of atmospheric boundary layer turbulence. To account for such effects while remaining amenable to conventional system-theoretic tools for flow estimation and control, we propose a new class of data-enhanced physics-based models for the dynamics of wind farm flow fluctuations. Our approach relies on the predictive capability of the stochastically forced linearized Navier–Stokes equations around static base flow profiles provided by conventional engineering wake models. We identify the stochastic forcing into the linearized dynamics via convex optimization to ensure statistical consistency with higher-fidelity models or experimental measurements while preserving model parsimony. We demonstrate the utility of our approach in completing the statistical signature of wake turbulence in accordance with large-eddy simulations of turbulent flow over a cascade of yawed wind turbines. Our numerical experiments provide insight into the significance of spatially distributed field measurements in recovering the statistical signature of wind farm turbulence and training stochastic linear models for short-term wind forecasting.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    