skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-sensitivity low-noise photodetector using a large-area silicon photomultiplier
The application of silicon photomultiplier (SiPM) technology for weak-light detection at a single photon level has expanded thanks to its better photon detection efficiency in comparison to a conventional photomultiplier tube (PMT). SiPMs with large detection area have recently become commercially available, enabling applications where the photon flux is low both temporarily and spatially. On the other hand, several drawbacks exist in the usage of SiPMs such as a higher dark count rate, many readout channels, slow response time, and optical crosstalk; therefore, users need to carefully consider the trade-offs. This work presents a SiPM-embedded compact large-area photon detection module. Various techniques are adopted to overcome the disadvantages of SiPMs so that it can be generally utilized as an upgrade from a PMT. A simple cooling component and recently developed optical crosstalk suppression method are adopted to reduce the noise which is more serious for larger-area SiPMs. A dedicated readout circuit increases the response frequency and reduces the number of readout channels. We favorably compare this design with a conventional PMT and obtain both higher photon detection efficiency and larger-area acceptance.  more » « less
Award ID(s):
2136573
PAR ID:
10390011
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
31
Issue:
2
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 1943
Size(s):
Article No. 1943
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Liquid xenon time projection chambers are promising detectors to search for neutrinoless double beta decay (0 $$\nu \beta \beta $$ ν β β ), due to their response uniformity, monolithic sensitive volume, scalability to large target masses, and suitability for extremely low background operations. The nEXO collaboration has designed a tonne-scale time projection chamber that aims to search for 0 $$\nu \beta \beta $$ ν β β of $$^{136}$$ 136 Xe with projected half-life sensitivity of $$1.35\times 10^{28}$$ 1.35 × 10 28  yr. To reach this sensitivity, the design goal for nEXO is $$\le $$ ≤ 1% energy resolution at the decay Q -value ( $$2458.07\pm 0.31$$ 2458.07 ± 0.31  keV). Reaching this resolution requires the efficient collection of both the ionization and scintillation produced in the detector. The nEXO design employs Silicon Photo-Multipliers (SiPMs) to detect the vacuum ultra-violet, 175 nm scintillation light of liquid xenon. This paper reports on the characterization of the newest vacuum ultra-violet sensitive Fondazione Bruno Kessler VUVHD3 SiPMs specifically designed for nEXO, as well as new measurements on new test samples of previously characterised Hamamatsu VUV4 Multi Pixel Photon Counters (MPPCs). Various SiPM and MPPC parameters, such as dark noise, gain, direct crosstalk, correlated avalanches and photon detection efficiency were measured as a function of the applied over voltage and wavelength at liquid xenon temperature (163 K). The results from this study are used to provide updated estimates of the achievable energy resolution at the decay Q -value for the nEXO design. 
    more » « less
  2. Abstract The detection of individual photons at cryogenic temperatures is of interest to many experiments searching for physics beyond the Standard Model. Silicon photomultipliers (SiPMs) are often deployed in liquid argon or liquid xenon to detect scintillation light either directly or after it has been wavelength-shifted. Maximizing the photon detection efficiency (PDE) of the SiPMs used in these experiments optimizes the sensitivity to new physics; however, the PDEs of commercial SiPMs, although well known at room temperature, are not well characterized at the cryogenic temperatures at which many experiments operate them. Here we present results from an experimental setup that measures the photon detection efficiencies of silicon photomultipliers at liquid nitrogen temperature, 77 K. Results from a KETEK PM3325-WB-D0 and a Hamamatsu S13360-3050CS silicon photomultiplier — of R&D interest to the LEGEND experiment — exhibit a decrease in photon detection efficiency greater than 20% at liquid nitrogen temperature relative to room temperature for 562 nm light. 
    more » « less
  3. SiPM-based readouts are becoming the standard for light detection in particle detectors given their superior resolution and ease of use with respect to vacuum tube photo-multipliers. However, the contributions of noise detection such as the dark rate, cross-talk, and after-pulsing (AP) may significantly impact their performance. In this work, we present the development of highly reflective single-phase argon chambers capable of displaying light yields up to 32 photo-electrons per keV, with approximately 12 being primary photo-electrons generated by the argon scintillation, while the rest are accounted by optical cross-talk. Furthermore, the presence of compound processes results in a generalized Fano factor larger than 2 already at an over-voltage of 5 V. Finally, we present a parametrization of the optical cross-talk for the FBK NUV-HD-Cryo SiPMs at 87 K that can be extended to future detectors with tailored optical simulations. 
    more » « less
  4. We present results of the detailed study of several hundred Hamamatsu H12700 Multianode Photomultiplier Tubes (MaPMTs), characterizing their response to the Cherenkov light photons in the second Ring Imaging Cherenkov detector, a part of the CLAS12 upgrade at Jefferson Lab. The total number of pixels studied was 25536. The single photoelectron spectra were measured for each pixel at different high voltages and light intensities of the laser test setup. Using the same dedicated front-end electronics as in the first RICH detector, the setup allowed us to characterize each pixel’s properties such as gain, quantum efficiency, signal crosstalk between neighboring pixels, and determine the signal threshold values to optimize their efficiency to detect Cherenkov photons. A recently published state-of-the-art mathematical model, describing photon detector response functions measured in low light conditions, was extended to include the description of the crosstalk contributions to the spectra. The database of extracted parameters will be used for the final selection of the MaPMTs, their arrangement in the new RICH detector, and the optimization of the operational settings of the front-end electronics. The results show that the characteristics of the H12700 MaPMTs satisfy our requirements for the position-sensitive single photoelectron detectors. 
    more » « less
  5. Abstract SBND is the near detector of the Short-Baseline Neutrino program at Fermilab. Its location near to the Booster Neutrino Beam source and relatively large mass will allow the study of neutrino interactions on argon with unprecedented statistics. This paper describes the expected performance of the SBND photon detection system, using a simulated sample of beam neutrinos and cosmogenic particles. Its design is a dual readout concept combining a system of 120 photomultiplier tubes, used for triggering, with a system of 192 X-ARAPUCA devices, located behind the anode wire planes. Furthermore, covering the cathode plane with highly-reflective panels coated with a wavelength-shifting compound recovers part of the light emitted towards the cathode, where no optical detectors exist. We show how this new design provides a high light yield and a more uniform detection efficiency, an excellent timing resolution and an independent 3D-position reconstruction using only the scintillation light. Finally, the whole reconstruction chain is applied to recover the temporal structure of the beam spill, which is resolved with a resolution on the order of nanoseconds. 
    more » « less