skip to main content


Title: Accelerating the discovery of novel magnetic materials using machine learning–guided adaptive feedback
Magnetic materials are essential for energy generation and information devices, and they play an important role in advanced technologies and green energy economies. Currently, the most widely used magnets contain rare earth (RE) elements. An outstanding challenge of notable scientific interest is the discovery and synthesis of novel magnetic materials without RE elements that meet the performance and cost goals for advanced electromagnetic devices. Here, we report our discovery and synthesis of an RE-free magnetic compound, Fe 3 CoB 2 , through an efficient feedback framework by integrating machine learning (ML), an adaptive genetic algorithm, first-principles calculations, and experimental synthesis. Magnetic measurements show that Fe 3 CoB 2 exhibits a high magnetic anisotropy ( K 1 = 1.2 MJ/m 3 ) and saturation magnetic polarization ( J s = 1.39 T), which is suitable for RE-free permanent-magnet applications. Our ML-guided approach presents a promising paradigm for efficient materials design and discovery and can also be applied to the search for other functional materials.  more » « less
Award ID(s):
1729202 1729677
NSF-PAR ID:
10390430
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
47
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Magnetostrictive materials transduce magnetic and mechanical energies and when combined with piezoelectric elements, evoke magnetoelectric transduction for high-sensitivity magnetic field sensors and energy-efficient beyond-CMOS technologies. The dearth of ductile, rare-earth-free materials with high magnetostrictive coefficients motivates the discovery of superior materials. Fe 1− x Ga x alloys are amongst the highest performing rare-earth-free magnetostrictive materials; however, magnetostriction becomes sharply suppressed beyond x  = 19% due to the formation of a parasitic ordered intermetallic phase. Here, we harness epitaxy to extend the stability of the BCC Fe 1− x Ga x alloy to gallium compositions as high as x  = 30% and in so doing dramatically boost the magnetostriction by as much as 10x relative to the bulk and 2x larger than canonical rare-earth based magnetostrictors. A Fe 1− x Ga x − [Pb(Mg 1/3 Nb 2/3 )O 3 ] 0.7 −[PbTiO 3 ] 0.3 (PMN-PT) composite magnetoelectric shows robust 90° electrical switching of magnetic anisotropy and a converse magnetoelectric coefficient of 2.0 × 10 −5  s m −1 . When optimally scaled, this high coefficient implies stable switching at ~80 aJ per bit. 
    more » « less
  2. Abstract The promise of high-density and low-energy-consumption devices motivates the search for layered structures that stabilize chiral spin textures such as topologically protected skyrmions. At the same time, recently discovered long-range intrinsic magnetic orders in the two-dimensional van der Waals materials provide a new platform for the discovery of novel physics and effects. Here we demonstrate the Dzyaloshinskii–Moriya interaction and Néel-type skyrmions are induced at the WTe 2 /Fe 3 GeTe 2 interface. Transport measurements show the topological Hall effect in this heterostructure for temperatures below 100 K. Furthermore, Lorentz transmission electron microscopy is used to directly image Néel-type skyrmion lattice and the stripe-like magnetic domain structures as well. The interfacial coupling induced Dzyaloshinskii–Moriya interaction is estimated to have a large energy of 1.0 mJ m −2 . This work paves a path towards the skyrmionic devices based on van der Waals layered heterostructures. 
    more » « less
  3. New magnetic materials for energy and information-processing applications are of paramount importance in view of significant global challenges in environmental and information security. The discovery and design of materials requires efficient computational and experimental approaches for high throughput and efficiency. When increasingly powerful computational techniques are combined with special non-equilibrium fabrication methods, the search can uncover metastable compounds with desired magnetic properties. Here we review recent results on novel Fe-, Co- and Mn-rich magnetic compounds with high magnetocrystalline anisotropy, saturation magnetization, and Curie temperature created by combining experiments, adaptive genetic algorithm searches, and advanced electronic-structure computational methods. We discuss structural and magnetic properties of such materials including Co– and/or Fe–X compounds (X = N, Si, Sn, Zr, Hf, Y, C, S, Ti, or Mn), and their prospects for practical applications. 
    more » « less
  4. Abstract

    Transition‐metal borides (TMBs) containing Bn‐fragment (n>3) have recently gained interest for their ability to enable exciting magnetic materials. Herein, we show that the B4‐containing TiFe0.64(1)Os2.36(1)B2is a new ferromagnetic TMB with a Curie temperature of 523(2) K and a Weiss constant of 554(3) K, originating from the chain ofM3‐triangles (M=64 %Fe+36 %Os). The new phase was synthesized from the elements by arc‐melting, and its structure was elucidated by single‐crystal X‐ray diffraction. It belongs to the Ti1+xOs2−xRuB2‐type structure (space groupP2 m, no. 189) and contains trigonal‐planar B4boron fragments [B−B distance of 1.87(4) Å] interacting withM3‐triangles [M–Mdistances of 2.637(8) Å and 3.0199(2) Å]. The experimental results were supported by computational calculations based on the ideal TiFeOs2B2composition, which revealed strong ferromagnetic interactions within and between the Fe3‐triangles. This discovery represents the first magnetically ordered Os‐rich TMB, thus it will help expand our knowledge of the role of Os in low‐dimensional magnetism of intermetallics and enable the design of such materials in the future.

     
    more » « less
  5. Binary kagome compounds TmXn (T = Mn, Fe, Co; X = Sn, Ge; m:n = 3:1, 3:2, 1:1) have garnered recent interest owing to the presence of both topological band crossings and flatbands arising from the geometry of the metal-site kagome lattice. To exploit these electronic features for potential applications in spintronics, the growth of high-quality heterostructures is required. Here, we report the synthesis of Fe/FeSn and Co/FeSn bilayers on Al2O3 substrates using molecular beam epitaxy to realize heterointerfaces between elemental ferromagnetic metals and antiferromagnetic kagome metals. Structural characterization using high-resolution x-ray diffraction, reflection high-energy electron diffraction, and electron microscopy reveals that the FeSn films are flat and epitaxial. Rutherford backscattering spectroscopy was used to confirm the stoichiometric window where the FeSn phase is stabilized, while transport and magnetometry measurements were conducted to verify metallicity and magnetic ordering in the films. Exchange bias was observed, confirming the presence of antiferromagnetic order in the FeSn layers, paving the way for future studies of magnetism in kagome heterostructures and potential integration of these materials into devices.

     
    more » « less