skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Accelerating the discovery of novel magnetic materials using machine learning–guided adaptive feedback
Magnetic materials are essential for energy generation and information devices, and they play an important role in advanced technologies and green energy economies. Currently, the most widely used magnets contain rare earth (RE) elements. An outstanding challenge of notable scientific interest is the discovery and synthesis of novel magnetic materials without RE elements that meet the performance and cost goals for advanced electromagnetic devices. Here, we report our discovery and synthesis of an RE-free magnetic compound, Fe 3 CoB 2 , through an efficient feedback framework by integrating machine learning (ML), an adaptive genetic algorithm, first-principles calculations, and experimental synthesis. Magnetic measurements show that Fe 3 CoB 2 exhibits a high magnetic anisotropy ( K 1 = 1.2 MJ/m 3 ) and saturation magnetic polarization ( J s = 1.39 T), which is suitable for RE-free permanent-magnet applications. Our ML-guided approach presents a promising paradigm for efficient materials design and discovery and can also be applied to the search for other functional materials.  more » « less
Award ID(s):
1729202 1729677
PAR ID:
10390430
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
47
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Magnetostrictive materials transduce magnetic and mechanical energies and when combined with piezoelectric elements, evoke magnetoelectric transduction for high-sensitivity magnetic field sensors and energy-efficient beyond-CMOS technologies. The dearth of ductile, rare-earth-free materials with high magnetostrictive coefficients motivates the discovery of superior materials. Fe 1− x Ga x alloys are amongst the highest performing rare-earth-free magnetostrictive materials; however, magnetostriction becomes sharply suppressed beyond x  = 19% due to the formation of a parasitic ordered intermetallic phase. Here, we harness epitaxy to extend the stability of the BCC Fe 1− x Ga x alloy to gallium compositions as high as x  = 30% and in so doing dramatically boost the magnetostriction by as much as 10x relative to the bulk and 2x larger than canonical rare-earth based magnetostrictors. A Fe 1− x Ga x − [Pb(Mg 1/3 Nb 2/3 )O 3 ] 0.7 −[PbTiO 3 ] 0.3 (PMN-PT) composite magnetoelectric shows robust 90° electrical switching of magnetic anisotropy and a converse magnetoelectric coefficient of 2.0 × 10 −5  s m −1 . When optimally scaled, this high coefficient implies stable switching at ~80 aJ per bit. 
    more » « less
  2. Two-dimensional van der Waals (vdW) magnetic materials hold promise for the development of high-density, energy-efficient spintronic devices for memory and computation. Recent breakthroughs in material discoveries and spin-orbit torque control of vdW ferromagnets have opened a path for integration of vdW magnets in commercial spintronic devices. However, a solution for field-free electric control of perpendicular magnetic anisotropy (PMA) vdW magnets at room temperatures, essential for building compact and thermally stable spintronic devices, is still missing. Here, we report a solution for the field-free, deterministic, and nonvolatile switching of a PMA vdW ferromagnet, Fe3GaTe2, above room temperature (up to 320 K). We use the unconventional out-of-plane anti-damping torque from an adjacent WTe2layer to enable such switching with a low current density of 2.23 × 106A cm−2. This study exemplifies the efficacy of low-symmetry vdW materials for spin-orbit torque control of vdW ferromagnets and provides an all-vdW solution for the next generation of scalable and energy-efficient spintronic devices. 
    more » « less
  3. Abstract Manipulating the topological properties of spin textures in magnetic materials is of great interest due to the rich physics and promising technological applications of these materials in advanced electronic devices. A spin texture with desired topological properties can be created by magnetic monopole injection, resulting in topological transitions involving changes in the topological charge. Therefore, controlling magnetic monopole injection has paramount importance for obtaining the desired spin textures but has not yet been reported. Here, we report the use of reliably manipulated magnetic monopole injection in the topological transition from stripe domains to skyrmions in an Fe/Gd multilayer. An easily tunable in-plane magnetic field applied to an Fe/Gd multilayer plays a key role in the magnetic monopole injection by modulating the local exchange energy. Our findings facilitate the efficient management of topological transitions by providing an important method for controlling magnetic monopole injection. 
    more » « less
  4. New magnetic materials for energy and information-processing applications are of paramount importance in view of significant global challenges in environmental and information security. The discovery and design of materials requires efficient computational and experimental approaches for high throughput and efficiency. When increasingly powerful computational techniques are combined with special non-equilibrium fabrication methods, the search can uncover metastable compounds with desired magnetic properties. Here we review recent results on novel Fe-, Co- and Mn-rich magnetic compounds with high magnetocrystalline anisotropy, saturation magnetization, and Curie temperature created by combining experiments, adaptive genetic algorithm searches, and advanced electronic-structure computational methods. We discuss structural and magnetic properties of such materials including Co– and/or Fe–X compounds (X = N, Si, Sn, Zr, Hf, Y, C, S, Ti, or Mn), and their prospects for practical applications. 
    more » « less
  5. Abstract The promise of high-density and low-energy-consumption devices motivates the search for layered structures that stabilize chiral spin textures such as topologically protected skyrmions. At the same time, recently discovered long-range intrinsic magnetic orders in the two-dimensional van der Waals materials provide a new platform for the discovery of novel physics and effects. Here we demonstrate the Dzyaloshinskii–Moriya interaction and Néel-type skyrmions are induced at the WTe 2 /Fe 3 GeTe 2 interface. Transport measurements show the topological Hall effect in this heterostructure for temperatures below 100 K. Furthermore, Lorentz transmission electron microscopy is used to directly image Néel-type skyrmion lattice and the stripe-like magnetic domain structures as well. The interfacial coupling induced Dzyaloshinskii–Moriya interaction is estimated to have a large energy of 1.0 mJ m −2 . This work paves a path towards the skyrmionic devices based on van der Waals layered heterostructures. 
    more » « less