skip to main content


Title: Observations of pores and surrounding regions with CO 4.66 μm lines by BBSO/CYRA
Context. Solar observations of carbon monoxide (CO) indicate the existence of lower-temperature gas in the lower solar chromosphere. We present an observation of pores, and quiet-Sun, and network magnetic field regions with CO 4.66 μm lines by the Cryogenic Infrared Spectrograph (CYRA) at Big Bear Solar Observatory. Aims. We used the strong CO lines at around 4.66 μm to understand the properties of the thermal structures of lower solar atmosphere in different solar features with various magnetic field strengths. Methods. Different observations with different instruments were included: CO 4.66 μm imaging spectroscopy by CYRA, Atmospheric Imaging Assembly (AIA) 1700 Å images, Helioseismic and Magnetic Imager (HMI) continuum images, line-of-sight (LOS) magnetograms, and vector magnetograms. The data from 3D radiation magnetohydrodynamic (MHD) simulation with the Bifrost code are also employed for the first time to be compared with the observation. We used the Rybicki-Hummer (RH) code to synthesize the CO line profiles in the network regions. Results. The CO 3-2 R14 line center intensity changes to be either enhanced or diminished with increasing magnetic field strength, which should be caused by different heating effects in magnetic flux tubes with different sizes. We find several “cold bubbles” in the CO 3-2 R14 line center intensity images, which can be classified into two types. One type is located in the quiet-Sun regions without magnetic fields. The other type, which has rarely been reported in the past, is near or surrounded by magnetic fields. Notably, some are located at the edge of the magnetic network. The two kinds of cold bubbles and the relationship between cold bubble intensities and network magnetic field strength are both reproduced by the 3D MHD simulation with the Bifrost and RH codes. The simulation also shows that there is a cold plasma blob near the network magnetic fields, causing the observed cold bubbles seen in the CO 3-2 R14 line center image. Conclusions. Our observation and simulation illustrate that the magnetic field plays a vital role in the generation of some CO cold bubbles.  more » « less
Award ID(s):
1821294 2108235
NSF-PAR ID:
10391479
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
669
ISSN:
0004-6361
Page Range / eLocation ID:
A79
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We used 29 high-resolution line-of-sight magnetograms acquired with the Goode Solar Telescope (GST) in a quiet-Sun area to extrapolate a series of potential field configurations and study their time variations. The study showed that there are regions that consistently exhibit changes in loop connectivity, whereas other vast areas do not show such changes. Analysis of the topological features of the potential fields indicates that the photospheric footprint of the separatrix between open- and closed-loop systems closely matches the roots of rapid blue- and redshifted excursions, which are disk counterparts of type II spicules. There is a tendency for the footpoints of the observed Hαfeatures to be cospatial with the footpoints of the loops that most frequently change their connectivity, while the area occupied by the open fields that did not show any significant and persistent connectivity changes is void of prominent jet and spicular activity. We also detected and tracked magnetic elements using the Southwest Automatic Magnetic Identification Suite and GST magnetograms, which allowed us to construct artificial magnetograms and calculate the corresponding potential field configurations. Analysis of the artificial data showed tendencies similar to those found for the observed data. The present study suggests that a significant amount of chromospheric activity observed in the far wings of the Hαspectral line may be generated by reconnecting closed-loop systems and canopy fields consisting of “open” field lines.

     
    more » « less
  2. Aims.Recurring jets are observed in the solar atmosphere. They can erupt intermittently over a long period of time. By the observation of intermittent jets, we wish to understand what causes the characteristics of the periodic eruptions.

    Methods.We report intermittent jets observed by the Goode Solar Telescope (GST) with the TiO Broadband Filter Imager (BFI), the Visible Imaging Spectrometer (VIS) in Hα, and the Near-InfraRed Imaging Spectropolarimeter (NIRIS). The analysis was aided and complemented by 1400 Å and 2796 Å data from the Interface Region Imaging Spectrograph (IRIS). These observational instruments allowed us to analyze the temporal characteristics of the jet events. By constructing the Hαdopplergrams, we found that the plasma first moves upward, but during the second phase of the jet, the plasma flows back. Working with time slice diagrams, we investigated the characteristics of the jet dynamics.

    Results.The jet continued for up to 4 h. The time-distance diagram shows that the peak of the jet has clear periodic-eruption characteristics (5 min) during 18:00 UT–18:50 UT. We also found a periodic brightening phenomenon (5 min) during the jet bursts in the observed bands in the transition region (1400 Å and 2796 Å), which may be a response to intermittent jets in the upper solar atmosphere. The time lag is 3 min. Evolutionary images in the TiO band revealed a horizontal movement of the granulation at the location of the jet. By comparison to the quiet region of the Sun, we found that the footpoint of the jet is enhanced at the center of the Hαspectral line profile, without significant changes in the line wings. This suggests prolonged heating at the footpoint of the jet. In the mixed-polarity magnetic field region of the jet, we observed the emergence of magnetic flux, its cancellation, and shear, indicating possible intermittent magnetic reconnection. This is confirmed by the nonlinear force-free field model, which was reconstructed using the magneto-friction method.

    Conclusions.The multiwavelength analysis indicates that the events we studied were triggered by magnetic reconnection that was caused by mixed-polarity magnetic fields. We suggest that the horizontal motion of the granulation in the photosphere drives the magnetic reconnection, which is modulated byp-mode oscillations.

     
    more » « less
  3. Abstract

    Atmospheric gravity waves (AGWs) are low-frequency, buoyancy-driven waves that are generated by turbulent convection and propagate obliquely throughout the solar atmosphere. Their proposed energy contribution to the lower solar atmosphere and sensitivity to atmospheric parameters (e.g., magnetic fields and radiative damping) highlight their diagnostic potential. We investigate AGWs near a quiet-Sun disk center region using multiwavelength data from the Interferometric Bidimensional Spectrometer and the Solar Dynamics Observatory. These observations showcase the complex wave behavior present in the entire acoustic-gravity wave spectrum. Using Fourier spectral analysis and local helioseismology techniques on simultaneously observed line core Doppler velocity and intensity fluctuations, we study both the vertical and horizontal properties of AGWs. Propagating AGWs with perpendicular group and phase velocities are detected at the expected temporal and spatial scales throughout the lower solar atmosphere. We also find previously unobserved, varied phase difference distributions among our velocity and intensity diagnostic combinations. Time–distance analysis indicates that AGWs travel with an average group speed of 4.5 km s−1, which is only partially described by a simple simulation, suggesting that high-frequency AGWs dominate the signal. Analysis of the median magnetic field (4.2 G) suggests that propagating AGWs are not significantly affected by quiet-Sun photospheric magnetic fields. Our results illustrate the importance of multiheight observations and the necessity of future work to properly characterize this observed behavior.

     
    more » « less
  4. null (Ed.)
    ABSTRACT We analysed line-of-sight magnetic fields and magnetic power spectra of an undisturbed photosphere using magnetograms acquired by the Helioseismic and Magnetic Imager (HMI) on-board the Solar Dynamic Observatory and the Near InfraRed Imaging Spectrapolarimeter (NIRIS) operating at the Goode Solar Telescope of the Big Bear Solar Observatory. In the NIRIS data, we revealed thin flux tubes of 200–400 km in diameter and of 1000–2000 G field strength. The HMI power spectra determined for a coronal hole, a quiet sun, and a plage areas exhibit the same spectral index of −1 on a broad range of spatial scales from 10–20 Mm down to 2.4 Mm. This implies that the same mechanism(s) of magnetic field generation operate everywhere in the undisturbed photosphere. The most plausible one is the local turbulent dynamo. When compared to the HMI spectra, the −1.2 slope of the NIRIS spectrum appears to be more extended into the short spatial range until the cut-off at 0.8–0.9 Mm, after which it continues with a steeper slope of −2.2. Comparison of the observed and Kolmogorov-type spectra allowed us to infer that the Kolmogorov turbulent cascade cannot account for more than 35 per cent of the total magnetic energy observed in the scale range of 3.5–0.3 Mm. The energy excess can be attributed to other mechanisms of field generation such as the local turbulent dynamo and magnetic superdiffusivity observed in an undisturbed photosphere that can slow down the rate of the Kolmogorov cascade leading to a shallower resulting spectrum. 
    more » « less
  5. Abstract

    Magnetic field plays an important role in various solar eruption phenomena. The formation and evolution of the characteristic magnetic field topology in solar eruptions are critical problems that will ultimately help us understand the origin of these eruptions in the solar source regions. With the development of advanced techniques and instruments, observations with higher resolutions in different wavelengths and fields of view have provided more quantitative information for finer structures. It is therefore essential to improve the method with which we study the magnetic field topology in the solar source regions by taking advantage of high-resolution observations. In this study, we employ a nonlinear force-free field extrapolation method based on a nonuniform grid setting for an M-class flare eruption event (SOL2015-06-22T17:39) with embedded vector magnetograms from the Solar Dynamics Observatory (SDO) and the Goode Solar Telescope (GST). The extrapolation results for which the nonuniform embedded magnetogram for the bottom boundary was employed are obtained by maintaining the native resolutions of the corresponding GST and SDO magnetograms. We compare the field line connectivity with the simultaneous GST/Hαand SDO/Atmospheric Imaging Assembly observations for these fine-scale structures, which are associated with precursor brightenings. Then we perform a topological analysis of the field line connectivity corresponding to fine-scale magnetic field structures based on the extrapolation results. The analysis results indicate that when we combine the high-resolution GST magnetogram with a larger magnetogram from the SDO, the derived magnetic field topology is consistent with a scenario of magnetic reconnection among sheared field lines across the main polarity inversion line during solar flare precursors.

     
    more » « less