skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A universal model of electrochemical safety limits in vivo for electrophysiological stimulation
Electrophysiological stimulation has been widely adopted for clinical diagnostic and therapeutic treatments for modulation of neuronal activity. Safety is a primary concern in an interventional design leveraging the effects of electrical charge injection into tissue in the proximity of target neurons. While modalities of tissue damage during stimulation have been extensively investigated for specific electrode geometries and stimulation paradigms, a comprehensive model that can predict the electrochemical safety limits in vivo doesn’t yet exist. Here we develop a model that accounts for the electrode geometry, inter-electrode separation, material, and stimulation paradigm in predicting safe current injection limits. We performed a parametric investigation of the stimulation limits in both benchtop and in vivo setups for flexible microelectrode arrays with low impedance, high geometric surface area platinum nanorods and PEDOT:PSS, and higher impedance, planar platinum contacts. We benchmark our findings against standard clinical electrocorticography and depth electrodes. Using four, three and two contact electrochemical impedance measurements and comprehensive circuit models derived from these measurements, we developed a more accurate, clinically relevant and predictive model for the electrochemical interface potential. For each electrode configuration, we experimentally determined the geometric correction factors that dictate geometry-enforced current spreading effects. We also determined the electrolysis window from cyclic-voltammetry measurements which allowed us to calculate stimulation current safety limits from voltage transient measurements. From parametric benchtop electrochemical measurements and analyses for different electrode types, we created a predictive equation for the cathodal excitation measured at the electrode interface as a function of the electrode dimensions, geometric factor, material and stimulation paradigm. We validated the accuracy of our equation in vivo and compared the experimentally determined safety limits to clinically used stimulation protocols. Our new model overcomes the design limitations of Shannon’s equation and applies to macro- and micro-electrodes at different density or separation of contacts, captures the breakdown of charge-density based approaches at long stimulation pulse widths, and invokes appropriate power exponents to current, pulse width, and material/electrode-dependent impedance.  more » « less
Award ID(s):
1728497
PAR ID:
10392408
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Frontiers in Neuroscience
Volume:
16
ISSN:
1662-453X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ultrasmall microelectrode arrays have the potential to improve the spatial resolution of microstimulation. Carbon fiber (CF) microelectrodes with cross-sections of less than 8 μm have been demonstrated to penetrate cortical tissue and evoke minimal scarring in chronic implant tests. In this study, we investigate the stability and performance of neural stimulation electrodes comprised of electrodeposited platinum-iridium (PtIr) on carbon fibers. We conducted pulse testing and characterized charge injection in vitro and recorded voltage transients in vitro and in vivo. Standard electrochemical measurements (impedance spectroscopy and cyclic voltammetry) and visual inspection (scanning electron microscopy) were used to assess changes due to pulsing. Similar to other studies, the application of pulses caused a decrease in impedance and a reduction in voltage transients, but analysis of the impedance data suggests that these changes are due to surface modification and not permanent changes to the electrode. Comparison of scanning electron microscope images before and after pulse testing confirmed electrode stability. 
    more » « less
  2. Abstract Implanted neural stimulation and recording devices hold vast potential to treat a variety of neurological conditions, but the invasiveness, complexity, and cost of the implantation procedure greatly reduce access to an otherwise promising therapeutic approach. To address this need, a novel electrode that begins as an uncured, flowable prepolymer that can be injected around a neuroanatomical target to minimize surgical manipulation is developed. Referred to as the Injectrode, the electrode conforms to target structures forming an electrically conductive interface which is orders of magnitude less stiff than conventional neuromodulation electrodes. To validate the Injectrode, detailed electrochemical and microscopy characterization of its material properties is performed and the feasibility of using it to stimulate the nervous system electrically in rats and swine is validated. The silicone‐metal‐particle composite performs very similarly to pure wire of the same metal (silver) in all measures, including exhibiting a favorable cathodic charge storage capacity (CSCC) and charge injection limits compared to the clinical LivaNova stimulation electrode and silver wire electrodes. By virtue of its simplicity, the Injectrode has the potential to be less invasive, more robust, and more cost‐effective than traditional electrode designs, which could increase the adoption of neuromodulation therapies for existing and new indications. 
    more » « less
  3. Most of the measurements of electrode polarization resistance are conducted using electrochemical impedance spectroscopy (EIS). The electrochemical devices, however, are typically used in a DC mode. The objective of the present work was to measure electrode polarization resistance using both EIS and DC techniques. A solid cylinder of 8YSZ of diameter ~1.17 cm and length ~5.00 cm was made by powder pressing followed by sintering. LSM + YSZ electrodes were applied on the two end surfaces of the cylinder upon which gold mesh was placed. Four Pt electrodes/probes were painted along the circumference. During DC measurements, DC voltage was applied across the end electrodes and potentials were measured at all four probes. The current was also measured. From these measurements electrode polarizations were estimated separately for the two electrodes as a function of current. EIS was conducted across the two end electrodes as well as across electrode-1 and probe-2, and across probe-2 and electrode-2. This allowed the determination of the polarization resistances of the two electrodes separately. Point by point additions of the electrode-1/probe-2 and probe-2/electrode-2 spectra matched the electrode-1/electrode-2 spectra. There was good agreement between the DC and the EIS measurements. 
    more » « less
  4. Lanthanum strontium cobalt iron oxide (LSCF) is commonly used as a cathode in solid oxide fuel cells (SOFCs), because it is a mixed ionic-electronic conductor with reasonable oxygen ion conductivity and high electronic conductivity. Yttria stabilized zirconia (YSZ) is used as an electrolyte in SOFCs with good oxygen ion conductivity. AC techniques are used to test the performance of SOFCs. But electrode processes at the cathode and the anode cannot be studied separately using 2-probe electrical impedance spectroscopy (EIS). To overcome this problem, 2-probe EIS with three probes and DC tests were conducted. An LSCF/8YSZ/LSCF symmetrical bar-shaped cell was made, and platinum strip electrodes were applied as probes for EIS and DC measurements. Impedance spectra across the cathode and the platinum strip electrode and across the anode and the platinum strip electrode were measured separately. The sum was evaluated to see if it matches the EIS spectra across the cathode and the anode. The polarity was switched to study how it affects the electrode processes. The polarization resistances of the electrodes were also measured by a DC method separately. EIS and DC measurements are in good agreement. Results indicate the two electrodes need not be identical. 
    more » « less
  5. Abstract Neuromodulation technologies have gained considerable attention for their clinical potential in treating neurological disorders and advancing cognition research. However, traditional methods like electrical stimulation and optogenetics face technical and biological challenges that limit their therapeutic and research applications. A promising alternative, photoelectric neurostimulation, uses near‐infrared light to generate electrical pulses and thus enables stimulation of neuronal activity without genetic alterations. This study explores various design strategies to enhance photoelectric stimulation with minimally invasive, ultrasmall, untethered carbon electrodes. Employing a multiphoton laser as the near‐infrared (NIR) light source, benchtop experiments are conducted using a three‐electrode setup and chronopotentiometry to record photo‐stimulated voltage. In vivo evaluations utilize Thy1‐GCaMP6s mice with acutely implanted ultrasmall carbon electrodes. Results highlighted the beneficial effects of high duty‐cycle laser scanning and photovoltaic polymer interfaces on the photo‐stimulated voltages by the implanted electrode. Additionally, the promising potential of carbon‐based diamond electrodes are demonstrated for photoelectric stimulation and the application of photoelectric stimulation in precise chemical delivery by loading mesoporous silica nanoparticles (SNPs) co‐deposited with polyethylenedioxythiophene (PEDOT). Together, these findings on photoelectric stimulation utilizing ultrasmall carbon electrodes underscore its immense potential for advancing the next generation of neurostimulation technology. 
    more » « less