skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Metagrating meets the geometry-based efficiency limit for AR waveguide in-couplers
Recently, augmented reality (AR) displays have attracted considerable attention due to the highly immersive and realistic viewer experience they can provide. One key challenge of AR displays is the fundamental trade-off between the extent of the field-of-view (FOV) and the size of the eyebox, set by the conservation of etendue sets this trade-off. Exit-pupil expansion (EPE) is one possible solution to this problem. However, it comes at the cost of distributing light over a larger area, decreasing the overall system's brightness. In this work, we show that the geometry of the waveguide and the in-coupler sets a fundamental limit on how efficient the combiner can be for a given FOV. This limit can be used as a tool for waveguide designers to benchmark the in-coupling efficiency of their in-coupler gratings. We design a metasurface-based grating (metagrating) and a commonly used SRG as in-couplers using the derived limit to guide optimization. We then compare the diffractive efficiencies of the two types of in-couplers to the theoretical efficiency limit. For our chosen waveguide geometry, the metagrating's 28% efficiency surpasses the SRG's 20% efficiency and nearly matches the geometry-based limit of 29% due to the superior angular response control of metasurfaces compared to SRGs. This work provides new insight into the efficiency limit of waveguide-based combiners and paves a novel path toward implementing metasurfaces in efficient waveguide AR displays.  more » « less
Award ID(s):
1822049 2310640 2310681 1822026
PAR ID:
10392817
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
31
Issue:
3
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 4599
Size(s):
Article No. 4599
Sponsoring Org:
National Science Foundation
More Like this
  1. Kress, Bernard C; Peroz, Christophe (Ed.)
    The creation of new see-through near-eye displays (NEDs) architectures is a topic of intense research focus. A fundamental problem that each design must address is the field of view (FOV) and eyebox of NEDs are limited by etendue conservation for a fixed display optics size. Waveguide architecture provides the solution to increasing the eyebox in NEDs without increasing the optics size through exit pupil expansion. Brightness and uniformity are two key features of waveguide architecture. In this work, we focus on the brightness of the waveguide since the image uniformity can be compensated by the display engine. We show that the geometry of the waveguide sets a fundamental limit on the in-coupling efficiency for a given FOV. This limit can be used as a tool for waveguide designers to benchmark the in-coupling efficiency of their incoupler gratings. With this derived limit, we designed and optimized a metasurface-based grating (metagrating) and a surface relief grating (SRG) as in-couplers. The diffractive efficiencies of the two types of in-couplers were then compared to the theoretical efficiency limit. The metagrating's 28% efficiency surpasses the SRG's 20% efficiency and nearly matches the geometry-based limit of 29% due to the superior angular response control of metasurfaces compared to SRGs. This work provides a new understanding of the brightness efficiency limit of waveguide-based combiners and paves a novel path toward implementing metasurfaces in efficient waveguide AR displays. 
    more » « less
  2. Three-dimensional (3D) vision in augmented reality (AR) displays can enable highly immersive and realistic viewer experience, hence, attracts much attention. Most current approaches create 3D vision by projecting stereoscopic images to different eyes using two separate projection systems, which are inevitably bulky for wearable devices. Here, we propose a compact stereo waveguide AR display system using a single piece of thin flat glass integrated with a polarization-multiplexed metagrating in-coupler and two diffractive grating out-couplers. Incident light of opposite circular polarization states carrying stereoscopic images are first steered by the metagrating in-coupler to opposite propagation directions in the flat glass waveguide, subsequently extracted by the diffractive grating out-couplers, and finally received by different eyes, forming 3D stereo vision. Experimentally, we fabricated a display prototype and demonstrated independent projection of two polarization-multiplexed stereoscopic images. 
    more » « less
  3. Electro-optic (EO) transduction of weak radio frequency (RF) and millimeter-wave signals, such as those received by an antenna, onto laser sidebands for processing in the optical domain requires efficient EO modulators. Microrings offer spatial density and efficiency advantages over Mach–Zehnder modulators (MZMs), but conventional single-ring modulators suffer a fundamental trade-off between resonantly enhanced conversion efficiency and the RF carrier frequency that it can accommodate. Dual-cavity “photonic molecule” modulators resolve this trade-off, allowing high efficiency independent of the RF carrier frequency by providing separate resonant supermodes to enhance the laser local oscillator (LO) and the narrowband RF-detuned sideband. However, the RF frequency is fixed at design time by geometry, with efficiency dropping quickly for RF carriers away from the design value. We propose a novel, to the best of our knowledge, triple-cavity configuration with an off-resonant middle ring acting as an effective tunable coupler between two active modulator cavities. This configuration provides wideband tunability of the target RF carrier while maintaining efficient sideband conversion. When the middle ring is passive (highQ), this configuration provides wide RF tunability with no efficiency penalty over the fixed dual-cavity case and could become an important building block for future RF/mm-wave photonic integrated circuits (PICs). 
    more » « less
  4. Abstract Metalenses—flat lenses made with optical metasurfaces—promise to enable thinner, cheaper, and better imaging systems. Achieving a sufficient angular field of view (FOV) is crucial toward that goal and requires a tailored incident-angle-dependent response. Here, we show that there is an intrinsic trade-off between achieving a desired broad-angle response and reducing the thickness of the device. Like the memory effect in disordered media, this thickness bound originates from the Fourier transform duality between space and angle. One can write down the transmission matrix describing the desired angle-dependent response, convert it to the spatial basis where its degree of nonlocality can be quantified through a lateral spreading, and determine the minimal device thickness based on such a required lateral spreading. This approach is general. When applied to wide-FOV lenses, it predicts the minimal thickness as a function of the FOV, lens diameter, and numerical aperture. The bound is tight, as some inverse-designed multi-layer metasurfaces can approach the minimal thickness we found. This work offers guidance for the design of nonlocal metasurfaces, proposes a new framework for establishing bounds, and reveals the relation between angular diversity and spatial footprint in multi-channel systems. 
    more » « less
  5. Phase change chalcogenides such as Ge2Sb2Te5(GST) have recently enabled advanced optical devices for applications such as in-memory computing, reflective displays, tunable metasurfaces, and reconfigurable photonics. However, designing phase change optical devices with reliable and efficient electrical control is challenging due to the requirements of both high amorphization temperatures and extremely fast quenching rates for reversible switching. Here, we use a Multiphysics simulation framework to model three waveguide-integrated microheaters designed to switch optical phase change materials. We explore the effects of geometry, doping, and electrical pulse parameters to optimize the switching speed and minimize energy consumption in these optical devices. 
    more » « less