skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Real‐Time Prediction of Alongshore Near‐Field Tsunami Runup Distribution From Heterogeneous Earthquake Slip Distribution
Abstract Real‐time tsunami prediction is necessary for tsunami forecasting. Although tsunami forecasting based on a precomputed tsunami simulation database is fast, it is difficult to respond to earthquakes that are not in the database. As the computation speed increases, various alternatives based on physics‐based models have been proposed. However, physics‐based models still require several minutes to simulate tsunamis and can have numerical stability issues that potentially make them unreliable for use in forecasting—particularly in the case of near‐field tsunamis. This paper presents a data‐driven model called the tsunami runup response function for finite faults (TRRF‐FF) model that can predict alongshore near‐field tsunami runup distribution from heterogeneous earthquake slip distribution in less than a second. Once the TRRF‐FF model is trained and calibrated based on a discrete set of tsunami simulations, the TRRF‐FF model can predict alongshore tsunami runup distribution from any combination of finite fault parameters. The TRRF‐FF model treats the leading‐order contribution and the residual part of the alongshore tsunami runup distribution separately. The interaction between finite faults is modeled based on the leading‐order alongshore tsunami runup distribution. We validated the TRRF‐FF modeling approach with more than 200 synthetic tsunami scenarios in eastern Japan. We further explored the performance of the TRRF‐FF model by applying it to the 2011 Tohoku (Japan) tsunami event. The results show that the TRRF‐FF model is more flexible, occupies much less storage space than a precomputed tsunami simulation database, and is more rapid and reliable than real‐time physics‐based numerical simulation.  more » « less
Award ID(s):
1630099 1735139
PAR ID:
10392942
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
128
Issue:
1
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tsunamis generated by seafloor displacements accompanying large submarine earthquakes provide sensitivity to absolute slip position and distribution for offshore faulting analogous to that of geodetic observations for landward faulting. Tsunami recordings at deep‐water and near‐shore ocean bottom pressure sensors and tide gauges, along with runup and inundation measurements, can now be reliably modeled using detailed bathymetric structures and robust numerical codes. As a result, tsunami observations now play an important role in quantifying coseismic slip distributions for large submarine earthquakes in subduction zones and other tectonic environments. Applications of joint modeling or inversion of seismic, geodetic and tsunami observations for recent major earthquakes are described, highlighting the specific contributions of the tsunami observations to source model resolution. Tsunami observations provide unique information on the up‐dip extent of earthquake coseismic slip on subduction zone megathrust faults and occurrence of near‐trench slip, which are usually not well constrained by seismic and land‐based geodetic signals. Tsunami signals also help to detect offshore slow slip that is not evident in seismic or land‐based geodetic data and to balance geophysical constraints on ruptures that extend from on‐shore to off‐shore. Tsunami runup measurements and stratigraphic deposits further provide unique constraints on large earthquake ruptures that occurred prior to modern geophysical instrumentation. 
    more » « less
  2. Abstract The Kalapana, Hawaii,MW7.7 earthquake on November 29, 1975 generated a local tsunami with at least 14.3 m runup on the southeast shore of Hawaii Island adjacent to Kilauea Volcano. This was the largest locally generated tsunami since the great 1868 Ka'u earthquake located along‐shore to the southwest. Well‐recorded tide gauge and runup observations provide a key benchmark for studies of statewide tsunami hazards from actively deforming southeast Hawaii Island. However, the source process of the earthquake remains controversial, with coastal landsliding and/or offshore normal or thrust faulting mechanisms having been proposed to reconcile features of seismic, geodetic, and tsunami observations. We utilize these diverse observations for the 1975 Kalapana earthquake to deduce a compound faulting model that accounts for the overall tsunamigenesis, involving both landslide block faulting along the shore and slip on the island basal décollement. Thrust slip of 4.5–8.0 m on the offshore décollement produces moderate near‐field runup but controls the far‐field tsunami. The slip distribution implies that residual strain energy was available for the May 4, 2018MW7.2 thrust earthquake during the Kilauea‐East Rift Zone eruption. Local faulting below land contributes to geodetic and seismic observations, but is non‐tsunamigenic and not considered. Slip of 4–10 m on landslide‐like faults, which extend from the Hilina Fault Zone scarp to offshore shallowly dipping faults reaching near the seafloor, triples the near‐field tsunami runup. This compound model clarifies the roles of the faulting components in assessing tsunami hazards for the Hawaiian Islands. 
    more » « less
  3. Tsunamis in the last two decades have resulted in the loss of life of over 200,000 people and have caused billions of dollars in damage. There is therefore great motivation for the development and improvement of current tsunami warning systems. The work presented here represents advancements made towards the creation of a neural network-based tsunami warning system which can produce fast inundation forecasts with high accuracy. This was done by first improving the waveform resolution and accuracy of Tsunami Squares, an efficient cellular automata approach to wave simulation. It was then used to create a database of precomputed tsunamis in the event of a magnitude 9+ rupture of the Cascadia Subduction Zone, located only ∼100 km off the coast of Oregon, US. Our approach utilized a convolutional neural network which took wave height data from buoys as input and proved successful as maps of maximum inundation could be predicted for the town of Seaside, OR with a median error of ∼0.5 m. 
    more » « less
  4. Tsunamigenic earthquakes pose considerable risks, both economically and socially, yet earthquake and tsunami hazard assessments are typically conducted separately. Earthquakes associated with unexpected tsunamis, such as the 2018 Mw  7.5 strike-slip Sulawesi earthquake, emphasize the need to study the tsunami potential of active submarine faults in different tectonic settings. Here, we investigate physics-based scenarios combining simulations of 3D earthquake dynamic rupture and seismic wave propagation with tsunami generation and propagation. We present time-dependent modeling of one-way linked and 3D fully coupled earthquakes and tsunamis for the ∼ 100 km long Húsavík–Flatey Fault Zone (HFFZ) in North Iceland. Our analysis shows that the HFFZ has the potential to generate sizable tsunamis. The six dynamic rupture models sourcing our tsunami scenarios vary regarding hypocenter location, spatiotemporal evolution, fault slip, and fault structure complexity but coincide with historical earthquake magnitudes. Earthquake dynamic rupture scenarios on a less segmented fault system, particularly with a hypocenter location in the eastern part of the fault system, have a larger potential for local tsunami generation. Here, dynamically evolving large shallow fault slip (∼ 8 m), near-surface rake rotation (± 20∘), and significant coseismic vertical displacements of the local bathymetry (± 1 m) facilitate strike-slip faulting tsunami generation. We model tsunami crest to trough differences (total wave heights) of up to ∼ 0.9 m near the town Ólafsfjörður. In contrast, none of our scenarios endanger the town of Akureyri, which is shielded by multiple reflections within the narrow Eyjafjörður bay and by Hrísey island. We compare the modeled one-way linked tsunami waveforms with simulation results using a 3D fully coupled approach. We find good agreement in the tsunami arrival times and location of maximum tsunami heights. While seismic waves result in transient motions of the sea surface and affect the ocean response, they do not appear to contribute to tsunami generation. However, complex source effects arise in the fully coupled simulations, such as tsunami dispersion effects and the complex superposition of seismic and acoustic waves within the shallow continental shelf of North Iceland. We find that the vertical velocity amplitudes of near-source acoustic waves are unexpectedly high – larger than those corresponding to the actual tsunami – which may serve as a rapid indicator of surface dynamic rupture. Our results have important implications for understanding the tsunamigenic potential of strike-slip fault systems worldwide and the coseismic acoustic wave excitation during tsunami generation and may help to inform future tsunami early warning systems. 
    more » « less
  5. Abstract. Tsunamigenic earthquakes pose considerable risks, both economically and socially, yet earthquake and tsunami hazard assessments are typically conducted separately. Earthquakes associated with unexpected tsunamis, such as the 2018 Mw  7.5 strike-slip Sulawesi earthquake, emphasize the need to study the tsunami potential of active submarine faults in different tectonic settings. Here, we investigate physics-based scenarios combining simulations of 3D earthquake dynamic rupture and seismic wave propagation with tsunami generation and propagation. We present time-dependent modeling of one-way linked and 3D fully coupled earthquakes and tsunamis for the ∼ 100 km long Húsavík–Flatey Fault Zone (HFFZ) in North Iceland. Our analysis shows that the HFFZ has the potential to generate sizable tsunamis. The six dynamic rupture models sourcing our tsunami scenarios vary regarding hypocenter location, spatiotemporal evolution, fault slip, and fault structure complexity but coincide with historical earthquake magnitudes. Earthquake dynamic rupture scenarios on a less segmented fault system, particularly with a hypocenter location in the eastern part of the fault system, have a larger potential for local tsunami generation. Here, dynamically evolving large shallow fault slip (∼ 8 m), near-surface rake rotation (± 20∘), and significant coseismic vertical displacements of the local bathymetry (± 1 m) facilitate strike-slip faulting tsunami generation. We model tsunami crest to trough differences (total wave heights) of up to ∼ 0.9 m near the town Ólafsfjörður. In contrast, none of our scenarios endanger the town of Akureyri, which is shielded by multiple reflections within the narrow Eyjafjörður bay and by Hrísey island. We compare the modeled one-way linked tsunami waveforms with simulation results using a 3D fully coupled approach. We find good agreement in the tsunami arrival times and location of maximum tsunami heights. While seismic waves result in transient motions of the sea surface and affect the ocean response, they do not appear to contribute to tsunami generation. However, complex source effects arise in the fully coupled simulations, such as tsunami dispersion effects and the complex superposition of seismic and acoustic waves within the shallow continental shelf of North Iceland. We find that the vertical velocity amplitudes of near-source acoustic waves are unexpectedly high – larger than those corresponding to the actual tsunami – which may serve as a rapid indicator of surface dynamic rupture. Our results have important implications for understanding the tsunamigenic potential of strike-slip fault systems worldwide and the coseismic acoustic wave excitation during tsunami generation and may help to inform future tsunami early warning systems. 
    more » « less