skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Berry-phase interpretation of thin-film micromagnetism
Magnetic flux densities ( B-fields) and field intensities ( H-fields) in thin films are investigated from the viewpoints of Berry phase and topological Hall effect. The well-known origin of the topological Hall effect is an emergent B-field originating from the Berry phase of conduction electrons, but Maxwell’s equations predict the relevant perpendicular component B z to be zero. This paradox is solved by treating the electrons as point-like objects in Lorentz cavities. These cavities can also be used to interpret magnetization measurements in the present and other contexts, but structural and magnetic inhomogeneities lead to major modifications of the Lorentz-hole picture.  more » « less
Award ID(s):
2044049
PAR ID:
10393096
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
AIP Advances
Volume:
12
Issue:
3
ISSN:
2158-3226
Page Range / eLocation ID:
035341
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Magnetic transition metal chalcogenides form an emerging platform for exploring spin-orbit driven Berry phase phenomena owing to the nontrivial interplay between topology and magnetism. Here we show that the anomalous Hall effect in pristine Cr 2 Te 3 thin films manifests a unique temperature-dependent sign reversal at nonzero magnetization, resulting from the momentum-space Berry curvature as established by first-principles simulations. The sign change is strain tunable, enabled by the sharp and well-defined substrate/film interface in the quasi-two-dimensional Cr 2 Te 3 epitaxial films, revealed by scanning transmission electron microscopy and depth-sensitive polarized neutron reflectometry. This Berry phase effect further introduces hump-shaped Hall peaks in pristine Cr 2 Te 3 near the coercive field during the magnetization switching process, owing to the presence of strain-modulated magnetic layers/domains. The versatile interface tunability of Berry curvature in Cr 2 Te 3 thin films offers new opportunities for topological electronics. 
    more » « less
  2. Abstract Proposed mechanisms for large intrinsic anomalous Hall effect (AHE) in magnetic topological semimetals include diverging Berry curvatures of Weyl nodes, anticrossing nodal rings or points of non-trivial bands. Here we demonstrate that a half-topological semimetal (HTS) state near a topological critical point can provide an alternative mechanism for a large AHE via systematic studies on an antiferromagnetic (AFM) half-Heusler compound TbPdBi. We not only observe a large AHE with tanΘH≈ 2 in its field-driven ferromagnetic (FM) phase, but also find a distinct Hall resistivity peak in its canted AFM phase. Moreover, we observe a large negative magnetoresistance with a value of ~98%. Our in-depth theoretical modelling indicates that these exotic transport properties originate from the HTS state which exhibits Berry curvature cancellation between the trivial spin-up and nontrivial spin-down bands. Our study offers alternative strategies for improved materials design for spintronics and other applications. 
    more » « less
  3. ABSTRACT The Hall effect is recently shown to be efficient in magnetized dense molecular cores and could lead to a bimodal formation of rotationally supported discs (RSDs) in the first core phase. However, how such Hall dominated systems evolve in the protostellar accretion phase remains unclear. We carry out 2D axisymmetric simulations including Hall effect and ohmic dissipation, with realistic magnetic diffusivities computed from our equilibrium chemical network. We find that Hall effect only becomes efficient when the large population of very small grains (VSGs: ≲100 Å) is removed from the standard Mathis–Rumpl–Nordsieck size distribution. With such an enhanced Hall effect, however, the bimodality of disc formation does not continue into the main accretion phase. The outer part of the initial ∼40 au disc formed in the anti-aligned configuration ($$\boldsymbol {\Omega \cdot B}\lt 0$$) flattens into a thin rotationally supported Hall current sheet as Hall effect moves the poloidal magnetic field radially inward relative to matter, leaving only the inner ≲10–20 au RSD. In the aligned configuration ($$\boldsymbol {\Omega \cdot B}\gt 0$$), disc formation is suppressed initially but a counter-rotating disc forms subsequently due to efficient azimuthal Hall drift. The counter-rotating disc first grows to ∼30 au as Hall effect moves the magnetic field radially outward, but only the inner ≲10 au RSD is long lived like in the anti-aligned case. Besides removing VSGs, cosmic ray ionization rate should be below a few 10−16 s−1 for Hall effect to be efficient in disc formation. We conclude that Hall effect produces small ≲10–20 au discs regardless of the polarity of the magnetic field, and that radially outward diffusion of magnetic fields remains crucial for disc formation and growth. 
    more » « less
  4. Abstract The discovery of topological Hall effect (THE) has important implications for next‐generation high‐density nonvolatile memories, energy‐efficient nanoelectronics, and spintronic devices. Both real‐space topological spin configurations and two anomalous Hall effects (AHE) with opposite polarity due to two magnetic phases have been proposed for THE‐like feature in SrRuO3(SRO) films. In this work, SRO thin films with and without THE‐like features are systematically Investigated to decipher the origin of the THE feature. Magnetic measurement reveals the coexistence of two magnetic phases of different coercivity (Hc) in both the films, but the hump feature cannot be explained by the two channel AHE model based on these two magnetic phases. In fact, the AHE is mainly governed by the magnetic phase with higherHc. A diffusive Berry phase transition model is proposed to explain the THE feature. The coexistence of two Berry phases with opposite signs over a narrow temperature range in the high Hc magnetic phase can explain the THE like feature. Such a coexistence of two Berry phases is due to the strong local structural tilt and microstructure variation in the thinner films. This work provides an insight between structure/micro structure and THE like features in SRO epitaxial thin films. 
    more » « less
  5. Abstract Searching for Kagome magnets with novel magnetic and electronic properties has been attracting significant efforts recently. Here, the magnetic, electronic, and thermoelectric properties of Fe3Ge single crystals with Fe atoms forming a slightly distorted Kagome lattice are reported. It is shown that Fe3Ge exhibits a large anomalous Hall effect and anomalous Nernst effect. The observed anomalous transverse thermoelectric conductivity reaches ≈4.6 A m−1 K−1, which is larger than the conventional ferromagnets and most of the topological ferromagnets reported in literature. The first‐principles calculations suggest that these exceptional transport properties are dominated by the intrinsic mechanism, which highlights the significant contribution of the Berry curvature of massive Dirac gaps in the momentum space. Additionally, a topological Hall resistivity of 0.9 µΩ cm and a topological Nernst coefficient of 1.2 µV K−1are also observed, which are presumably ascribed to the Berry phase associated with the field‐induced non‐zero scalar spin chirality. These features highlight the synergic effects of the Berry phases in both momentum space and real space of Fe3Ge, which render it an excellent candidate for room‐temperature thermoelectric applications based on transverse transport. 
    more » « less