skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluating impacts of syntenic block detection strategies on rearrangement phylogeny using M. tuberculosis isolates
Abstract Motivation The phylogenetic signal of structural variation informs a more comprehensive understanding of evolution. As (near-)complete genome assembly becomes more commonplace, the next methodological challenge for inferring genome rearrangement trees is the identification of syntenic blocks of orthologous sequences. In this paper, we studied 94 reference quality genomes of primarily Mycobacterium tuberculosis (Mtb) isolates as a benchmark to evaluate these methods. The clonal nature of Mtb evolution, the manageable genome sizes, along with substantial levels of structural variation make this an ideal benchmarking dataset. Results We tested several methods for detecting homology and obtaining syntenic blocks and two methods for inferring phylogenies from them, then compared the resulting trees to the standard method’s tree, inferred from nucleotide substitutions. We found that, not only the choice of methods, but also their parameters can impact results, and that the tree inference method had less impact than the block determination method. Interestingly, a rearrangement tree based on blocks from the Cactus whole-genome aligner was fully compatible with the highly-supported branches of the substitution-based tree, enabling the combination of the two into a high-resolution supertree. Overall, our results indicate that accurate trees can be inferred using genome rearrangements, but the choice of the methods for inferring homology requires care. Availability and Implementation Analysis scripts and code written for this study are available at https://gitlab.com/LPCDRP/rearrangement-homology.pub and https://gitlab.com/LPCDRP/syntement. Supplementary information Supplementary data are available at Bioinformatics online.  more » « less
Award ID(s):
1845967
PAR ID:
10393243
Author(s) / Creator(s):
; ; ;
Editor(s):
Schwartz, Russell
Date Published:
Journal Name:
Bioinformatics
ISSN:
1367-4803
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Schwartz, Russell (Ed.)
    Abstract Motivation Cells in an organism share a common evolutionary history, called cell lineage tree. Cell lineage tree can be inferred from single cell genotypes at genomic variation sites. Cell lineage tree inference from noisy single cell data is a challenging computational problem. Most existing methods for cell lineage tree inference assume uniform uncertainty in genotypes. A key missing aspect is that real single cell data usually has non-uniform uncertainty in individual genotypes. Moreover, existing methods are often sampling based and can be very slow for large data. Results In this article, we propose a new method called ScisTree, which infers cell lineage tree and calls genotypes from noisy single cell genotype data. Different from most existing approaches, ScisTree works with genotype probabilities of individual genotypes (which can be computed by existing single cell genotype callers). ScisTree assumes the infinite sites model. Given uncertain genotypes with individualized probabilities, ScisTree implements a fast heuristic for inferring cell lineage tree and calling the genotypes that allow the so-called perfect phylogeny and maximize the likelihood of the genotypes. Through simulation, we show that ScisTree performs well on the accuracy of inferred trees, and is much more efficient than existing methods. The efficiency of ScisTree enables new applications including imputation of the so-called doublets. Availability and implementation The program ScisTree is available for download at: https://github.com/yufengwudcs/ScisTree. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  2. Abstract Motivation Phylogenomics faces a dilemma: on the one hand, most accurate species and gene tree estimation methods are those that co-estimate them; on the other hand, these co-estimation methods do not scale to moderately large numbers of species. The summary-based methods, which first infer gene trees independently and then combine them, are much more scalable but are prone to gene tree estimation error, which is inevitable when inferring trees from limited-length data. Gene tree estimation error is not just random noise and can create biases such as long-branch attraction. Results We introduce a scalable likelihood-based approach to co-estimation under the multi-species coalescent model. The method, called quartet co-estimation (QuCo), takes as input independently inferred distributions over gene trees and computes the most likely species tree topology and internal branch length for each quartet, marginalizing over gene tree topologies and ignoring branch lengths by making several simplifying assumptions. It then updates the gene tree posterior probabilities based on the species tree. The focus on gene tree topologies and the heuristic division to quartets enables fast likelihood calculations. We benchmark our method with extensive simulations for quartet trees in zones known to produce biased species trees and further with larger trees. We also run QuCo on a biological dataset of bees. Our results show better accuracy than the summary-based approach ASTRAL run on estimated gene trees. Availability and implementation QuCo is available on https://github.com/maryamrabiee/quco. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  3. BackgroundAnalyses of microbial evolution often use reconciliation methods. However, the standard duplication-transfer-loss (DTL) model does not account for the fact that species trees are often not fully sampled and thus, from the perspective of reconciliation, a gene family may enter the species tree from the outside. Moreover, within the genome, genes are often rearranged, causing them to move to new syntenic regions. ResultsWe extend the DTL model to account for two events that commonly arise in the evolution of microbes:originof a gene from outside the sampled species tree andrearrangementof gene syntenic regions. We describe an efficient algorithm for maximum parsimony reconciliation in this new DTLOR model and then show how it can be extended to account for non-binary gene trees to handle uncertainty in gene tree topologies. Finally, we describe preliminary experimental results from the integration of our algorithm into the existing xenoGI tool for reconstructing the histories of genomic islands in closely related bacteria. ConclusionsReconciliation in the DTLOR model can offer new insights into the evolution of microbes that is not currently possible under the DTL model. 
    more » « less
  4. null (Ed.)
    Abstract Motivation The combination of genomic and epidemiological data holds the potential to enable accurate pathogen transmission history inference. However, the inference of outbreak transmission histories remains challenging due to various factors such as within-host pathogen diversity and multi-strain infections. Current computational methods ignore within-host diversity and/or multi-strain infections, often failing to accurately infer the transmission history. Thus, there is a need for efficient computational methods for transmission tree inference that accommodate the complexities of real data. Results We formulate the direct transmission inference (DTI) problem for inferring transmission trees that support multi-strain infections given a timed phylogeny and additional epidemiological data. We establish hardness for the decision and counting version of the DTI problem. We introduce Transmission Tree Uniform Sampler (TiTUS), a method that uses SATISFIABILITY to almost uniformly sample from the space of transmission trees. We introduce criteria that prioritize parsimonious transmission trees that we subsequently summarize using a novel consensus tree approach. We demonstrate TiTUS’s ability to accurately reconstruct transmission trees on simulated data as well as a documented HIV transmission chain. Availability and implementation https://github.com/elkebir-group/TiTUS. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  5. Abstract Motivation We propose Meltos, a novel computational framework to address the challenging problem of building tumor phylogeny trees using somatic structural variants (SVs) among multiple samples. Meltos leverages the tumor phylogeny tree built on somatic single nucleotide variants (SNVs) to identify high confidence SVs and produce a comprehensive tumor lineage tree, using a novel optimization formulation. While we do not assume the evolutionary progression of SVs is necessarily the same as SNVs, we show that a tumor phylogeny tree using high-quality somatic SNVs can act as a guide for calling and assigning somatic SVs on a tree. Meltos utilizes multiple genomic read signals for potential SV breakpoints in whole genome sequencing data and proposes a probabilistic formulation for estimating variant allele fractions (VAFs) of SV events. Results In order to assess the ability of Meltos to correctly refine SNV trees with SV information, we tested Meltos on two simulated datasets with five genomes in both. We also assessed Meltos on two real cancer datasets. We tested Meltos on multiple samples from a liposarcoma tumor and on a multi-sample breast cancer data (Yates et al., 2015), where the authors provide validated structural variation events together with deep, targeted sequencing for a collection of somatic SNVs. We show Meltos has the ability to place high confidence validated SV calls on a refined tumor phylogeny tree. We also showed the flexibility of Meltos to either estimate VAFs directly from genomic data or to use copy number corrected estimates. Availability and implementation Meltos is available at https://github.com/ih-lab/Meltos. Contact imh2003@med.cornell.edu Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less