Wireless sensor networks play a pivotal role in a myriad of applications, including agriculture, health monitoring, tracking and structural health monitoring. One crucial aspect of these applications involves accurately determining the positions of the sensors. In this paper, we study a novel Nystrom based sampling protocol in which a selected group of anchor nodes, with known locations, establish communication with only a subset of the remaining sensor nodes. Leveraging partial distance information, we present an efficient algorithm for estimating sensor locations. To demonstrate the effectiveness of our approach, we provide empirical results using synthetic data and underscore the practical advantages of our sampling technique for precision agriculture.
more »
« less
Scalable Privacy-preserving Geo-distance Evaluation for Precision Agriculture IoT Systems
Precision agriculture has become a promising paradigm to transform modern agriculture. The recent revolution in big data and Internet-of-Things (IoT) provides unprecedented benefits including optimizing yield, minimizing environmental impact, and reducing cost. However, the mass collection of farm data in IoT applications raises serious concerns about potential privacy leakage that may harm the farmers’ welfare. In this work, we propose a novel scalable and private geo-distance evaluation system, called SPRIDE, to allow application servers to provide geographic-based services by computing the distances among sensors and farms privately. The servers determine the distances without learning any additional information about their locations. The key idea of SPRIDE is to perform efficient distance measurement and distance comparison on encrypted locations over a sphere by leveraging a homomorphic cryptosystem. To serve a large user base, we further propose SPRIDE+ with novel and practical performance enhancements based on pre-computation of cryptographic elements. Through extensive experiments using real-world datasets, we show SPRIDE+ achieves private distance evaluation on a large network of farms, attaining 3+ times runtime performance improvement over existing techniques. We further show SPRIDE+ can run on resource-constrained mobile devices, which offers a practical solution for privacy-preserving precision agriculture IoT applications.
more »
« less
- PAR ID:
- 10393839
- Date Published:
- Journal Name:
- ACM Transactions on Sensor Networks
- Volume:
- 17
- Issue:
- 4
- ISSN:
- 1550-4859
- Page Range / eLocation ID:
- 1 to 30
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Internet of Things (IoT) devices have increased drastically in complexity and prevalence within the last decade. Alongside the proliferation of IoT devices and applications, attacks targeting them have gained popularity. Recent large-scale attacks such as Mirai and VPNFilter highlight the lack of comprehensive defenses for IoT devices. Existing security solutions are inadequate against skilled adversaries with sophisticated and stealthy attacks against IoT devices. Powerful provenance-based intrusion detection systems have been successfully deployed in resource-rich servers and desktops to identify advanced stealthy attacks. However, IoT devices lack the memory, storage, and computing resources to directly apply these provenance analysis techniques on the device. This paper presents ProvIoT, a novel federated edge-cloud security framework that enables on-device syscall-level behavioral anomaly detection in IoT devices. ProvIoT applies federated learning techniques to overcome data and privacy limitations while minimizing network overhead. Infrequent on-device training of the local model requires less than 10% CPU overhead; syncing with the global models requires sending and receiving 2MB over the network. During normal offline operation, ProvIoT periodically incurs less than 10% CPU overhead and less than 65MB memory usage for data summarization and anomaly detection. Our evaluation shows that ProvIoT detects fileless malware and stealthy APT attacks with an average F1 score of 0.97 in heterogeneous real-world IoT applications. ProvIoT is a step towards extending provenance analysis to resource-constrained IoT devices, beginning with well-resourced IoT devices such as the RaspberryPi, Jetson Nano, and Google TPU.more » « less
-
As network services progress and mobile and IoT environments expand, numerous security concerns have surfaced for spectrum access systems (SASs). The omnipresent risk of Denial-of-Service (DoS) attacks and raising concerns about user privacy (e.g., location privacy, anonymity) are among such cyber threats. These security and privacy risks increase due to the threat of quantum computers that can compromise longterm security by circumventing conventional cryptosystems and increasing the cost of countermeasures. While some defense mechanisms exist against these threats in isolation, there is a significant gap in the state of the art on a holistic solution against DoS attacks with privacy and anonymity for spectrum management systems, especially when post-quantum (PQ) security is in mind. In this paper, we propose a new cybersecurity framework, PACDoSQ, which is the first to offer location privacy and anonymity for spectrum management with counter DoS and PQ security simultaneously. Our solution introduces the private spectrum bastion concept to exploit existing architectural features of SASs and then synergizes them with multi-server private information retrieval and PQ-secure Tor to guarantee a location-private and anonymous acquisition of spectrum information, together with hash-based client-server puzzles for counter DoS. We prove that PACDoSQ achieves its security objectives and show its feasibility via a comprehensive performance evaluation.more » « less
-
Dynamic Searchable Symmetric Encryption (DSSE) allows to delegate keyword search and file update over an encrypted database via encrypted indexes, and therefore provides opportunities to mitigate the data privacy and utilization dilemma in cloud storage platforms. Despite its merits, recent works have shown that efficient DSSE schemes are vulnerable to statistical attacks due to the lack of forward-privacy, whereas forward-private DSSE schemes suffers from practicality concerns as a result of their extreme computation overhead. Due to significant practical impacts of statistical attacks, there is a critical need for new DSSE schemes that can achieve the forward-privacy in a more practical and efficient manner. We propose a new DSSE scheme that we refer to as Forward-private Sublinear DSSE (FS-DSSE). FS-DSSE harnesses special secure update strategies and a novel caching strategy to reduce the computation cost of repeated queries. Therefore, it achieves forward-privacy, sublinear search complexity, low end-to-end delay, and parallelization capability simultaneously. We fully implemented our proposed method and evaluated its performance on a real cloud platform. Our experimental evaluation results showed that the proposed scheme is highly secure and highly efficient compared with state-of-the-art DSSE techniques. Specifically, FS-DSSE is up to three magnitude of times faster than forward-secure DSSE counterparts, depending on the frequency of the searched keyword in the database.more » « less
-
Machine learning has been successfully applied to big data analytics across various disciplines. However, as data is collected from diverse sectors, much of it is private and confidential. At the same time, one of the major challenges in machine learning is the slow training speed of large models, which often requires high-performance servers or cloud services. To protect data privacy while still allowing model training on such servers, privacy-preserving machine learning using Fully Homomorphic Encryption (FHE) has gained significant attention. However, its widespread adoption is hindered by performance degradation. This paper presents our experiments on training models over encrypted data using FHE. The results show that while FHE ensures privacy, it can significantly degrade performance, requiring complex tuning to optimize.more » « less
An official website of the United States government

