skip to main content


Title: Broad-Scale Converter Optimization Utilizing Discrete Time State-Space Modeling
Schematic-level optimization and steady-state loss modeling play a vital role in the design of advanced power converters. Recently, discrete time state-space modeling has shown merits in rapid analysis and generality to arbitrary circuit topologies but has not yet been utilized under rapid optimization techniques. In this work, we investigate methods for the incorporation of rapid gradient-based optimization techniques leveraging discrete time state-space modeling and showcase the utility of the approach for use in the converter design process.  more » « less
Award ID(s):
1751878
NSF-PAR ID:
10394230
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE Design Methodologies Conference (DMC)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Modeling plays a vital role in the design of advanced power converters. Commonly, modeling is completed using either dedicated hand analysis, which must be completed individually for each topology, or time-stepping circuit simulations, which are insufficiently rapid for broad analysis considering a wide range of potential designs or operating points. Discrete time state-space modeling of switching converters has shown merits in rapid analysis and generality to arbitrary circuit topologies but is hampered by difficulty incorporating nonlinear elements. In this work, we investigate methods for the incorporation of nonlinear elements into a generalized discrete time state-space modeling framework and showcase the utility of the approach for use in the converter design process. 
    more » « less
  2. Active rectifiers in wireless power transfer systems exhibit many benefits compared to diode rectifiers, including increased efficiency, controllable impedance, and regulation capability. To achieve these benefits, the receivers must synchronize their switching frequency to the transmitter to avoid sub-fundamental beat frequency oscillations. Without additional communication, the receiver must synchronize to locally-sensed signals, such as voltages and currents induced in the power stage by the transmitter. However, the waveforms in the receiver are dependent on both the transmitter and receiver operation, resulting in an internal feedback between sensing and synchronization which prohibits the use of traditional phase-locked-loop design techniques. In this digest, a discrete time state space model is developed and used to derive a small signal model of these interactions for the purpose of designing stable closed-loop synchronization control. A prototype 150 kHz wireless power transfer converter is used to experimentally validate the modeling, showcasing stable synchronization. 
    more » « less
  3. Abstract Supervised machine learning techniques have proven to be effective tools for engineering design exploration and optimization applications, in which they are especially useful for mapping promising or feasible regions of the design space. The design space mappings can be used to inform early-stage design exploration, provide reliability assessments, and aid convergence in multiobjective or multilevel problems that require collaborative design teams. However, the accuracy of the mappings can vary based on problem factors such as the number of design variables, presence of discrete variables, multimodality of the underlying response function, and amount of training data available. Additionally, there are several useful machine learning algorithms available, and each has its own set of algorithmic hyperparameters that significantly affect accuracy and computational expense. This work elucidates the use of machine learning for engineering design exploration and optimization problems by investigating the performance of popular classification algorithms on a variety of example engineering optimization problems. The results are synthesized into a set of observations to provide engineers with intuition for applying these techniques to their own problems in the future, as well as recommendations based on problem type to aid engineers in algorithm selection and utilization. 
    more » « less
  4. null (Ed.)
    Steady-state modeling plays an important role in the design of advanced power converters. Typically, steady-state modeling is completed by time-stepping simulators, which may be slow to converge to steady-state, or by dedicated analysis, which is time-consuming to develop across multiple topologies. Discrete time state-space modeling is a uniform approach to rapidly simulate arbitrary power converter designs. However, the approach requires modification to capture state-dependent switching, such as diode switching or current programmed modulation. This work provides a framework to identify and correct state-dependent switching within discrete time state-space modeling and shows the utility of the proposed method within the power converter design process. 
    more » « less
  5. With an unprecedented combination of mechanical and electrical properties, polymer nanocomposites have the potential to be widely used across multiple industries. Tailoring nanocomposites to meet application specific requirements remains a challenging task, owing to the vast, mixed-variable design space that includes composition ( i.e. choice of polymer, nanoparticle, and surface modification) and microstructures ( i.e. dispersion and geometric arrangement of particles) of the nanocomposite material. Modeling properties of the interphase, the region surrounding a nanoparticle, introduces additional complexity to the design process and requires computationally expensive simulations. As a result, previous attempts at designing polymer nanocomposites have focused on finding the optimal microstructure for only a fixed combination of constituents. In this article, we propose a data centric design framework to concurrently identify optimal composition and microstructure using mixed-variable Bayesian optimization. This framework integrates experimental data with state-of-the-art techniques in interphase modeling, microstructure characterization and reconstructions and machine learning. Latent variable Gaussian processes (LVGPs) quantifies the lack-of-data uncertainty over the mixed-variable design space that consists of qualitative and quantitative material design variables. The design of electrically insulating nanocomposites is cast as a multicriteria optimization problem with the goal of maximizing dielectric breakdown strength while minimizing dielectric permittivity and dielectric loss. Within tens of simulations, our method identifies a diverse set of designs on the Pareto frontier indicating the tradeoff between dielectric properties. These findings project data centric design, effectively integrating experimental data with simulations for Bayesian Optimization, as an effective approach for design of engineered material systems. 
    more » « less