Deficits in decision making are at the heart of many psychiatric diseases, such as substance abuse disorders and attention deficit hyperactivity disorder. Consequently, rodent models of decision making are germane to understanding the neural mechanisms underlying adaptive choice behavior and how such mechanisms can become compromised in pathological conditions. A critical factor that must be integrated with reward value to ensure optimal decision making is the occurrence of consequences, which can differ based on probability (risk of punishment) and temporal contiguity (delayed punishment). This article will focus on two models of decision making that involve explicit punishment, both of which recapitulate different aspects of consequences during human decision making. We will discuss each behavioral protocol, the parameters to consider when designing an experiment, and finally how such animal models can be utilized in studies of psychiatric disease. © 2020 Wiley Periodicals LLC.
- Award ID(s):
- 1847794
- PAR ID:
- 10394341
- Date Published:
- Journal Name:
- Management Science
- Volume:
- 68
- Issue:
- 5
- ISSN:
- 0025-1909
- Page Range / eLocation ID:
- 3635 to 3659
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Basic Protocol 1 : Behavioral trainingSupport Protocol : Equipment testingAlternate Protocol : Reward discriminationBasic Protocol 2 : Risky decision‐making task (RDT)Basic Protocol 3 : Delayed punishment decision‐making task (DPDT) -
A person’s decisions vary even when options stay the same, like when a gambler changes bets despite constant odds of winning. Internal bias (e.g., emotion) contributes to this variability and is shaped by past outcomes, yet its neurobiology during decision-making is not well understood. To map neural circuits encoding bias, we administered a gambling task to 10 participants implanted with intracerebral depth electrodes in cortical and subcortical structures. We predicted the variability in betting behavior within and across patients by individual bias, which is estimated through a dynamical model of choice. Our analysis further revealed that high-frequency activity increased in the right hemisphere when participants were biased toward risky bets, while it increased in the left hemisphere when participants were biased away from risky bets. Our findings provide electrophysiological evidence that risk-taking bias is a lateralized push–pull neural system governing counterintuitive and highly variable decision-making in humans.
-
Predicting and understanding how people make decisions has been a long-standing goal in many fields, with quantitative models of human decision-making informing research in both the social sciences and engineering. We show how progress toward this goal can be accelerated by using large datasets to power machine-learning algorithms that are constrained to produce interpretable psychological theories. Conducting the largest experiment on risky choice to date and analyzing the results using gradient-based optimization of differentiable decision theories implemented through artificial neural networks, we were able to recapitulate historical discoveries, establish that there is room to improve on existing theories, and discover a new, more accurate model of human decision-making in a form that preserves the insights from centuries of research.
-
Choice context influences decision processes and is one of the primary determinants of what people choose. This insight has been used by academics and practitioners to study decision biases and to design behavioral interventions to influence and improve choices. We analyzed the effects of context-based behavioral interventions on the computational mechanisms underlying decision-making. We collected data from two large laboratory studies involving 19 prominent behavioral interventions, and we modeled the influence of each intervention using a leading computational model of choice in psychology and neuroscience. This allowed us to parametrize the biases induced by each intervention, to interpret these biases in terms of underlying decision mechanisms and their properties, to quantify similarities between interventions, and to predict how different interventions alter key choice outcomes. In doing so, we offer researchers and practitioners a theoretically principled approach to understanding and manipulating choice context in decision-making.more » « less
-
ABSTRACT How group‐living primates come to a consensus about navigating their environment is a result of their decision‐making processes. Although decision‐making has been examined in several primate taxa, it remains underexplored for primates living in anthropogenic landscapes. To shed light on consensus decision‐making and flexibility in this process, we examined collective movement behavior in a group of wild moor macaques (
Macaca maura ) experiencing a risk‐reward tradeoff as a result of roadside provisioning within Bantimurung Bulusaraung National Park in South Sulawesi, Indonesia. Our goal was to determine whether individual characteristics (e.g., sex, dominance rank, and/or social network centrality) predict the likelihood of initiating a collective movement and if the opportunity to receive food provisions along the road alters these patterns. Using the all‐occurrences method, we recorded the location, time, and identity of initiators and followers of each collective movement observed from April to June 2023 (N = 61). We used conditional logistic regression models to examine which individual characteristics predicted initiation overall and based on two destination categories: forest‐ and road‐directed collective movements. Initiation was distributed amongst most of the group, indicating a partially‐shared decision‐making style. Overall, adult males were more likely to initiate collective movements than adult females. However, for collective movements directed toward the risky roadside, dominance, rather than sex, was a better predictor of initiation, with higher ranked individuals being more likely to initiate collective movements. Examining the decision‐making processes in this species through collective movements can provide insight into how primates come to a consensus and the extent to which anthropogenic factors shape these processes. By shedding light on how moor macaques navigate the risk‐reward tradeoff at this site, our results can also inform the management of human‐macaque interfaces.