skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Real-time Wind Direction Estimation using Machine Learning on Operational Wind Farm Data
This paper presents regression and classification methods to estimate wind direction in a wind farm from operational data. Two neural network models are trained using supervised learning. The data are generated using high-fidelity large eddy simulations (LES) of a virtual wind farm with 16 turbines, which are representative of the data available in actual SCADA systems. The simulations include the high-fidelity flow physics and turbine dynamics. The LES data used for training and testing the neural network models are the rotor angular speeds of each turbine. Our neural network models use sixteen angular speeds as inputs to produce an estimate of the wind direction at each point in time. Training and testing of the neural network models are done for seven discrete wind directions, which span the most interesting cases due to symmetry of the wind farm layout. The results of this paper are indicative of the potential that existing neural network models have to obtain estimates of wind direction in real time.  more » « less
Award ID(s):
1839733
PAR ID:
10394610
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2021 60th IEEE Conference on Decision and Control (CDC)
Page Range / eLocation ID:
2456 to 2461
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Combined wake steering and induction control is a promising strategy for increasing collective wind farm power production over standard turbine control. However, computationally efficient models for predicting optimal control set points still need to be tested against high-fidelity simulations, particularly in regimes of high rotor thrust. In this study, large eddy simulations (LES) are used to investigate a two-turbine array using actuator disk modeling in conventionally neutral atmospheric conditions. The thrust coefficient and yaw-misalignment angle are independently prescribed to the upwind turbine in each simulation while downwind turbine operation is fixed. Analyzing the LES velocity fields shows that near-wake length decreases and wake recovery rate increases with increasing thrust. We model the wake behavior with a physics-based near-wake and induction model coupled with a Gaussian far-wake model. The near-wake model predicts the turbine thrust and power depending on the wake steering and induction control set point. The initial wake velocities predicted by the near-wake model are validated against LES data, and a calibrated far-wake model is used to estimate the power maximizing control set point and power gain. Both model-predicted and LES optimal set points exhibit increases in yaw angle and thrust coefficient for the leading turbine relative to standard control. The model-optimal set point predicts a power gain of 18.1% while the LES optimal set point results in a power gain of 20.7%. In contrast, using a tuned cosine model for the power-yaw relationship results in a set point with a lower magnitude of yaw, a thrust coefficient lower than in standard control, and predicts a power gain of 13.7%. Using the physics-based, model-predicted set points in LES results in a power within 1.5% of optimal, showing potential for joint yaw-induction control as a method for predictably increasing wind farm power output. 
    more » « less
  2. Abstract One‐way nested mesoscale to microscale simulations of an onshore wind farm have been performed nesting the Weather Research and Forecasting (WRF) model and our in‐house high‐resolution large‐eddy simulation code (UTD‐WF). Each simulation contains five nested WRF domains, with the largest domain spanning the north Texas Panhandle region with a 4 km resolution, while the highest resolution (50 m) nest simulates microscale wind fluctuations and turbine wakes within a single wind farm. The finest WRF domain in turn drives the UTD‐WF LES higher‐resolution domain for a subset of six turbines at a resolution of ∼5 m. The wind speed, direction, and boundary layer profiles from WRF are compared against measurements obtained with a met‐tower and a scanning Doppler wind LiDAR located within the wind farm. Additionally, power production obtained from WRF and UTD‐WF are assessed against supervisory control and data acquisition (SCADA) system data. Numerical results agree well with the experimental measurements of the wind speed, direction, and power production of the turbines. UTD‐WF high‐resolution domain improves significantly the agreement of the turbulence intensity at the turbines location compared with that of WRF. Velocity spectra have been computed to assess how the nesting allows resolving a wide range of scales at a reasonable computational cost. A domain sensitivity analysis has been performed. Velocity spectra indicate that placing the inlet too close to the first row of turbines results in an unrealistic peak of energy at the rotational frequency of the turbines. Spectra of the power production of a single turbine and of the cumulative power of the array have been compared with analytical models. 
    more » « less
  3. Abstract The power performance and the wind velocity field of an onshore wind farm are predicted with machine learning models and the pseudo‐2D RANS model, then assessed against SCADA data. The wind farm under investigation is one of the sites involved with the American WAKE experimeNt (AWAKEN). The performed simulations enable predictions of the power capture at the farm and turbine levels while providing insights into the effects on power capture associated with wake interactions that operating upstream turbines induce, as well as the variability caused by atmospheric stability. The machine learning models show improved accuracy compared to the pseudo‐2D RANS model in the predictions of turbine power capture and farm power capture with roughly half the normalized error. The machine learning models also entail lower computational costs upon training. Further, the machine learning models provide predictions of the wind turbulence intensity at the turbine level for different wind and atmospheric conditions with very good accuracy, which is difficult to achieve through RANS modeling. Additionally, farm‐to‐farm interactions are noted, with adverse impacts on power predictions from both models. 
    more » « less
  4. Power tracking is an emerging application for wind farm control designs that allows farms to participate in a wider range of grid services, such as secondary frequency regulation. Control designs that enable large wind farms to follow a time-varying power trajectory are complicated by aerodynamic interactions that make it impossible to decouple upstream wind turbine control actions from downstream power production. This coupling is particularly important in applications where the reference trajectory is changing faster than, or at a similar rate as, the propagation of turbine wakes through the farm. In this work we overcome these difficulties by using a dynamic wake model that accounts for wake expansion, advection, and multi-wake interactions within a model-based receding horizon controller for coordinated control of a large multi-turbine wind farm. An ensemble Kalman filter is employed for state estimation and error correction at the turbine level. We implement the controller in high-fidelity numerical simulations of a wind farm with 84 turbines and then test the controlled farm's ability to track a power reference signal. The results demonstrate the ability of the control algorithm to track two types of power reference signals used by a US independent system operator. 
    more » « less
  5. null (Ed.)
    This work focuses on the optimization of performance and profitability of a wind farm carried out by means of an economic model and Reynolds-Averaged Navier-Stokes (RANS) simulations of wind turbine wakes. Axisymmetric RANS simulations of isolated wind turbine wakes are leveraged with a quadratic super-positioning model to estimate wake interactions within wind farms. The resulting velocity field is used with an actuator disk model to predict power production from each turbine in the wind farm. Design optimization is performed by considering a site in North Texas, whose wind resource statistics are obtained from a meteorological tower. The RANS solver provides capabilities to simulate different incoming wind turbulence intensities and, hence, the wind farm optimization is performed by taking the daily cycle of the atmospheric stability into account. The objective functional of the optimization problem is the levelized cost of energy (LCoE) encompassing capital cost, operation and maintenance costs, land cost and annual power production. At the first level of the optimization problem, the wind farm gross capacity is determined by considering three potential turbine types with different rated power. Subsequently, the optimal wind farm layout is estimated by varying the uniform spacing between consecutive turbine rows. It is found that increasing turbine rated power, the wind farm profitability is enhanced. Substituting a wind farm of 24 turbines of 2.3-MW rated power with 18, 3-MW turbines could reduce the LCoE of about 1.56 $/MWh, while maintaining a similar gross capacity factor. The optimization of the spacing between turbine rows was found to be sensitive to the land cost. For a land cost of 0.05 $/m2, the layout could be designed with a spacing between 6 to 15 rotor diameters without any significant effect on the LCoE, while an increased land cost of 0.1 $/m2 leads to an optimal spacing of about 6 rotor diameters. 
    more » « less