skip to main content


Title: Establishing Physalis as a Solanaceae model system enables genetic reevaluation of the inflated calyx syndrome
Abstract The highly diverse Solanaceae family contains several widely studied models and crop species. Fully exploring, appreciating, and exploiting this diversity requires additional model systems. Particularly promising are orphan fruit crops in the genus Physalis, which occupy a key evolutionary position in the Solanaceae and capture understudied variation in traits such as inflorescence complexity, fruit ripening and metabolites, disease and insect resistance, self-compatibility, and most notable, the striking inflated calyx syndrome (ICS), an evolutionary novelty found across angiosperms where sepals grow exceptionally large to encapsulate fruits in a protective husk. We recently developed transformation and genome editing in Physalis grisea (groundcherry). However, to systematically explore and unlock the potential of this and related Physalis as genetic systems, high-quality genome assemblies are needed. Here, we present chromosome-scale references for P. grisea and its close relative Physalis pruinosa and use these resources to study natural and engineered variations in floral traits. We first rapidly identified a natural structural variant in a bHLH gene that causes petal color variation. Further, and against expectations, we found that CRISPR–Cas9-targeted mutagenesis of 11 MADS-box genes, including purported essential regulators of ICS, had no effect on inflation. In a forward genetics screen, we identified huskless, which lacks ICS due to mutation of an AP2-like gene that causes sepals and petals to merge into a single whorl of mixed identity. These resources and findings elevate Physalis to a new Solanaceae model system and establish a paradigm in the search for factors driving ICS.  more » « less
Award ID(s):
1732253
NSF-PAR ID:
10394647
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Plant Cell
Volume:
35
Issue:
1
ISSN:
1040-4651
Page Range / eLocation ID:
351 to 368
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Premise

    Solanaceae is a scientifically and economically important angiosperm family with a minimal fossil record and an intriguing early evolutionary history. Here, we report a newly discovered fossil lantern fruit with a suite of features characteristic of Physalideae within Solanaceae. The fossil comes from the early Eocene Laguna del Hunco site (ca. 52 Ma) in Chubut, Argentina, which previously yielded the only other physaloid fruit fossil,Physalis infinemundi.

    Methods

    The fruit morphology and calyx venation pattern of the new fossil were compared withP. infinemundiand extant species of Solanaceae.

    Results

    Physalis hunickeniisp. nov. is clearly distinct fromP. infinemundiin its fruiting calyx with wider primary veins, longer and thinner lobes, and especially in its venation pattern with high density, transverse tertiary veins; these features support its placement in a new species. In comparison with extant physaloid genera, the calyx venation pattern and other diagnostic traits reinforce placement of the new fossil, likeP. infinemundi, within the tribe Physalideae of Solanaceae.

    Conclusions

    Both species of fossil nightshades from Laguna del Hunco represent crown‐group Solanaceae but are older than all prior age estimates of the family. Although at least 20 transoceanic dispersals have been proposed as the driver of range expansion of Solanaceae, the Patagonian fossils push back the diversification of the family to Gondwanan times. Thus, overland dispersal across Gondwana is now a likely scenario for at least some biogeographic patterns, in light of the ancient trans‐Antarctic land connections between South America and Australia.

     
    more » « less
  2. Abstract

    Variation in mating systems is prevalent throughout angiosperms, with many transitions between outcrossing and selfing above and below the species level. This study documents a new case of an intraspecific breakdown of self-incompatibility in a wild relative of tomatillo, Physalis acutifolia. We used controlled greenhouse crosses to identify self-incompatible (SI) and self-compatible (SC) individuals grown from seed sampled across seven sites across Arizona and New Mexico. We measured 14 flower and fruit traits to test for trait variation associated with mating system. We also quantified pollen tube growth in vivo and tested for the presence of the S-RNase proteins in SI and SC styles. We found that seed from six of the seven sites produced SI individuals that terminated self-pollen tubes in the style and showed detectable S-RNase expression. By contrast, seed from one Arizona site produced SC individuals with no S-RNase expression. These SC individuals displayed typical selfing-syndrome traits such as smaller corollas, reduced stigma–anther distances, and a smaller pollen–ovule ratio. We also found plasticity in self-incompatibility as most of the SI individuals became SC and lost S-RNase expression roughly after 6 months in the greenhouse. While fixed differences in mating systems are known among the SI wild species and the often SC domesticated tomatillos, our study is the first to demonstrate intraspecific variation in natural populations as well as variation in SI over an individual’s lifespan.

     
    more » « less
  3. Wittkopp, Patricia (Ed.)
    Abstract Investigating closely related species that rapidly evolved divergent feeding morphology is a powerful approach to identify genetic variation underlying variation in complex traits. This can also lead to the discovery of novel candidate genes influencing natural and clinical variation in human craniofacial phenotypes. We combined whole-genome resequencing of 258 individuals with 50 transcriptomes to identify candidate cis-acting genetic variation underlying rapidly evolving craniofacial phenotypes within an adaptive radiation of Cyprinodon pupfishes. This radiation consists of a dietary generalist species and two derived trophic niche specialists—a molluscivore and a scale-eating species. Despite extensive morphological divergence, these species only diverged 10 kya and produce fertile hybrids in the laboratory. Out of 9.3 million genome-wide SNPs and 80,012 structural variants, we found very few alleles fixed between species—only 157 SNPs and 87 deletions. Comparing gene expression across 38 purebred F1 offspring sampled at three early developmental stages, we identified 17 fixed variants within 10 kb of 12 genes that were highly differentially expressed between species. By measuring allele-specific expression in F1 hybrids from multiple crosses, we found that the majority of expression divergence between species was explained by trans-regulatory mechanisms. We also found strong evidence for two cis-regulatory alleles affecting expression divergence of two genes with putative effects on skeletal development (dync2li1 and pycr3). These results suggest that SNPs and structural variants contribute to the evolution of novel traits and highlight the utility of the San Salvador Island pupfish system as an evolutionary model for craniofacial development. 
    more » « less
  4. SUMMARY

    Wild relatives of tomato are a valuable source of natural variation in tomato breeding, as many can be hybridized to the cultivated species (Solanum lycopersicum). Several, includingSolanum lycopersicoides, have been crossed toS. lycopersicumfor the development of ordered introgression lines (ILs), facilitating breeding for desirable traits. Despite the utility of these wild relatives and their associated ILs, few finished genome sequences have been produced to aid genetic and genomic studies. Here we report a chromosome‐scale genome assembly forS. lycopersicoidesLA2951, which contains 37 938 predicted protein‐coding genes. With the aid of this genome assembly, we have precisely delimited the boundaries of theS. lycopersicoidesintrogressions in a set ofS. lycopersicumcv. VF36 × LA2951 ILs. We demonstrate the usefulness of the LA2951 genome by identifying several quantitative trait loci for phenolics and carotenoids, including underlying candidate genes, and by investigating the genome organization and immunity‐associated function of the clusteredPtogene family. In addition, syntenic analysis of R2R3MYB genes sheds light on the identity of theAuberginelocus underlying anthocyanin production. The genome sequence and IL map provide valuable resources for studying fruit nutrient/quality traits, pathogen resistance, and environmental stress tolerance. We present a new genome resource for the wild speciesS. lycopersicoides, which we use to shed light on theAuberginelocus responsible for anthocyanin production. We also provide IL boundary mappings, which facilitated identifying novel carotenoid quantitative trait loci of which one was likely driven by an uncharacterized lycopene β‐cyclase whose function we demonstrate.

     
    more » « less
  5. Summary

    Black raspberry (Rubus occidentalis) is an important specialty fruit crop in theUSPacific Northwest that can hybridize with the globally commercialized red raspberry (R. idaeus). Here we report a 243 Mb draft genome of black raspberry that will serve as a useful reference for the Rosaceae andRubusfruit crops (raspberry, blackberry, and their hybrids). The black raspberry genome is largely collinear to the diploid woodland strawberry (Fragaria vesca) with a conserved karyotype and few notable structural rearrangements. Centromeric satellite repeats are widely dispersed across the black raspberry genome, in contrast to the tight association with the centromere observed in most plants. Among the 28 005 predicted protein‐coding genes, we identified 290 very recent small‐scale gene duplicates enriched for sugar metabolism, fruit development, and anthocyanin related genes which may be related to key agronomic traits during black raspberry domestication. This contrasts patterns of recent duplications in the wild woodland strawberryF. vesca, which show no patterns of enrichment, suggesting gene duplications contributed to domestication traits. Expression profiles from a fruit ripening series and roots exposed toVerticillium dahliaeshed insight into fruit development and disease response, respectively. The resources presented here will expedite the development of improved black and red raspberry, blackberry and otherRubuscultivars.

     
    more » « less