skip to main content

Title: Proxy‐Model Comparison for the Eocene‐Oligocene Transition in Southern High Latitudes

The Eocene‐Oligocene transition (EOT) marks the shift from greenhouse to icehouse conditions at 34 Ma, when a permanent ice sheet developed on Antarctica. Climate modeling studies have recently assessed the drivers of the transition globally. Here we revisit those experiments for a detailed study of the southern high latitudes in comparison to the growing number of mean annual sea surface temperature (SST) and mean air temperature (MAT) proxy reconstructions, allowing us to assess proxy‐model temperature agreement and refine estimates for the magnitude of thepCO2forcing of the EOT. We compile and update published proxy temperature records on and around Antarctica for the late Eocene (38–34 Ma) and early Oligocene (34–30 Ma). Compiled SST proxies cool by up to 3°C and MAT by up to 4°C between the timeslices. Proxy data were compared to previous climate model simulations representing pre‐ and post‐EOT, typically forced with a halving ofpCO2. We scaled the model outputs to identify the magnitude ofpCO2change needed to drive a commensurate change in temperature to best fit the temperature proxies. The multi‐model ensemble needs a 30 or 33% decrease inpCO2, to best fit MAT or SST proxies respectively. These proxy‐model intercomparisons identify decliningpCO2as the primary forcing of EOT cooling, with a magnitude (200 or 243 ppmv) approaching that of thepCO2proxies (150 ppmv). However individual model estimates span a decrease of 66–375 ppmv, thus proxy‐model uncertainties are dominated by model divergence.

more » « less
Award ID(s):
1908548 1844380
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Paleoceanography and Paleoclimatology
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. The early and late Eocene have both been the subject of many modelling studies, but few have focused on the middle Eocene. The latter still holds many challenges for climate modellers but is also key to understanding the events leading towards the conditions needed for Antarctic glaciation at the Eocene–Oligocene transition. Here, we present the results of CMIP5-like coupled climate simulations using the Community Earth System Model (CESM) version 1. Using a new detailed 38 Ma geography reconstruction and higher model resolution compared to most previous modelling studies and sufficiently long equilibration times, these simulations will help to further understand the middle to late Eocene climate. At realistic levels of atmospheric greenhouse gases, the model is able to show overall good agreement with proxy records and capture the important aspects of a warm greenhouse climate during the Eocene. With a quadrupling of pre-industrial concentrations of both CO2 and CH4 (i.e. 1120 ppm and ∼2700 ppb, respectively, or 4 × PIC; pre-industrial carbon), sea surface temperatures correspond well to the available late middle Eocene (42–38 Ma; ∼ Bartonian) proxies. Being generally cooler, the simulated climate under 2 × PIC forcing is a good analogue for that of the late Eocene (38–34 Ma; ∼ Priabonian). Terrestrial temperature proxies, although their geographical coverage is sparse, also indicate that the results presented here are in agreement with the available information. Our simulated middle to late Eocene climate has a reduced Equator-to-pole temperature gradient and a more symmetric meridional heat distribution compared to the pre-industrial reference. The collective effects of geography, vegetation, and ice account for a global average 5–7 ∘C difference between pre-industrial and 38 Ma Eocene boundary conditions, with important contributions from cloud and water vapour feedbacks. This helps to explain Eocene warmth in general, without the need for greenhouse gas levels much higher than indicated by proxy estimates (i.e. ∼500–1200 ppm CO2) or low-latitude regions becoming unreasonably warm. High-latitude warmth supports the idea of mostly ice-free polar regions, even at 2 × PIC, with Antarctica experiencing particularly warm summers. An overall wet climate is seen in the simulated Eocene climate, which has a strongly monsoonal character. Equilibrium climate sensitivity is reduced (0.62 ∘C W−1 m2; 3.21 ∘C warming between 38 Ma 2 × PIC and 4 × PIC) compared to that of the present-day climate (0.80 ∘C W−1 m2; 3.17 ∘C per CO2 doubling). While the actual warming is similar, we see mainly a higher radiative forcing from the second PIC doubling. A more detailed analysis of energy fluxes shows that the regional radiative balance is mainly responsible for sustaining a low meridional temperature gradient in the Eocene climate, as well as the polar amplification seen towards even warmer conditions. These model results may be useful to reconsider the drivers of Eocene warmth and the Eocene–Oligocene transition (EOT) but can also be a base for more detailed comparisons to future proxy estimates. 
    more » « less
  2. Abstract

    The Eocene‐Oligocene transition (EOT) marks the onset of Antarctic glaciation at 33.7 Ma. Although the benthic oxygen isotope record defines the major continental ice sheet expansion, recent sedimentary and geochemical evidence suggests the presence of earlier ephemeral ice sheets. Sediment cores from Ocean Drilling Program Legs 119 and 188 in Prydz Bay provide an archive of conditions in a major drainage system of East Antarctica. We study biomarker and microfossil evidence to discern how the vegetation and climate shifted between 36 and 33 Ma. Pollen was dominated by reworked Permian Glossopterid gymnosperms; however, penecontemporaneous Eocene pollen assemblages indicate that some vegetation survived the glacial advances. At the EOT, brGDGT soil biomarkers indicate abrupt cooling from 13°C to 8°C and soil pH increases from 6.0 to 6.7, suggesting drying which is further supported by plant wax hydrogen and carbon isotopic shifts of 20‰ and 1.1‰, respectively, and evidence for drying from weathering proxies. Although the terrestrial soil biomarker influx mostly precludes the use of TEX86, we find sea surface temperatures of 12°C in the late Eocene cooling to 8°C at the EOT. Marine productivity undergoes a sustained increase after the glacial advance, likely promoted by enhanced ocean circulation. Between the two glacial surge events of the Priabonian Oxygen Maximum at 37.3 Ma and the EOT at 33.7 Ma, we observe warming of 2–5°C at 35.7 and 34.7 Ma, with increase in penecontemporaneous pollen and enhanced marine productivity, capturing the last flickers of Antarctic warmth.

    more » « less
  3. Abstract

    The Eocene‐Oligocene Transition (EOT) at ∼34 Ma marked a climatic shift from greenhouse to icehouse conditions, toward long‐lasting lower global temperatures and a continental ice sheet in the Antarctic. We report on sedimentological and inorganic geochemical results across the EOT at Ocean Drilling Program (ODP) Site 696 in the Weddell Sea, within the Antarctic limb of the Atlantic circulation. The geochemical composition of detrital, authigenic and biogenic marine sediment components, and sortable silt proxies demonstrate the impact of ice growth on high latitude water masses. Sortable silt grain size and Zr/Rb ratios attest to a period of vigorous circulation at ∼36.2–35.8 Ma, coincident with a known warm interval in the Southern Ocean. Across the EOT, detrital provenance suggests that regional ice growth in the western Weddell Sea was stepwise, first expanding in the Antarctic Peninsula, followed by parts of West Antarctica. In conjunction with regional ice growth, high uranium enrichment factors (U EF) in sediments spanning the EOT interval indicate anoxic conditions in the sediment with evidence of carbonate dissolution. Following glacial expansion and sea‐ice formation at ∼33.6 Ma, a return to oxic conditions and carbonate preservation is observed with excess barium and phosphorous indicative of an increase in productivity, and potentially carbon export. Our results highlight the important connections between ice growth and the changing properties of high‐latitude water masses at the EOT with impacts on the global ocean circulation.

    more » « less
  4. Studies reveal that the sea-surface temperature (SST) of the Northern Hemisphere decreased at a smaller amplitude than that of the Southern Hemisphere during the Eocene−Oligocene transition (EOT). This interhemispheric temperature asymmetry has been associated with intensified Atlantic Meridional Overturning Circulation (AMOC) that may have driven enhanced precipitation and weathering in low latitudes and the subsequent drawdown of atmospheric carbon dioxide. However, no quantitative constraints on paleo-precipitation have been reported in low latitudes to characterize the AMOC effect across the EOT. Here, we present the results of high-resolution (ca. 6 k.y. per sample) isotopic and biomarker records from the Gulf of Mexico. Reconstructed precipitation using leaf wax carbon isotopes shows an increase of 44% across the EOT (34.1−33.6 Ma), which is accompanied by a secular increase in SST of ∼2 °C during the latest Eocene. We attribute the enhanced precipitation in the Gulf of Mexico to the northward shift of the Intertropical Convergence Zone that was driven by an enlarged polar-tropic temperature gradient in the Southern Hemisphere and an invigorated AMOC. Our findings link changes in meridional temperature gradient and large-scale oceanic circulation to the low-latitude terrestrial hydroclimate and provide paleohydrological evidence that supports CO2-weathering feedback during the EOT “greenhouse” to “icehouse” transition. 
    more » « less
  5. Bendick, R. (Ed.)
    The Qaidam Basin in the core area of arid Inner Asia has been considered undergoing continuous aridification over the Cenozoic. However, the Qaidam Basin is marked with expanded lacustrine sedimentation during the Oligocene, which contrasts with the fluvial or deltaic facies stratigraphically below (Eocene) and above (Miocene-present). The Oligocene lacustrine expansion challenges the idea of persistent aridification. To solve the conundrum, we reconstruct a long-term compound-specific hydrogen isotope (δ2H) record from sedimentary leaf wax n-alkanes to evaluate the paleoclimatic context before, during, and after the Oligocene lacustrine expansion. The δ2H results reveal three shifts at ca. 40 Ma, 34 Ma, and 24 Ma. The leaf wax δ2H values range from −176.8to −166.7from 51 to 40 Ma, followed by an abrupt increase of 23.9at 40 Ma. We interpret this rapid increase as enhanced aridification due to the coeval retreat of the Paratethys Sea from the region. At 34 Ma, the δ2H plunges across the Eocene-Oligocene transition (EOT). Post-EOT δ2H values are the lowest, vary with high amplitude from −187.1to −153.2, and are associated with the lacustrine facies expansion, indicating a wetter climate. By compiling the regional isotopic proxy studies, we observe the contrasting patterns in paleohydrology conditions since the EOT: the relaxation of aridity in the westerlies region versus the enhanced aridification in the East Asian summer monsoon region. We interpret that the west-east contrasting patterns represent the different climatic responses to global cooling: wetting in the west as a result of the enhanced moisture transport via westerlies replacing the subtropical high, and drying in the east due to the reduction in moisture content associated with weakening East Asian summer monsoon. Wetting in Inner Asia is synchronous with cooling in the ocean (North Atlantic) and on land (Xining Basin). Since 24 Ma, δ2H increases in response to warming during the latest Oligocene to the early Miocene when the subtropical high re-occupied Inner Asia, causing the aridity. This study reveals a dynamic climate in Inner Asia with different mechanisms responding to global change. 
    more » « less