The Unique Games Conjecture has pinned down the approximability of all constraint satisfaction problems (CSPs), showing that a natural semidefinite programming relaxation offers the optimal worstcase approximation ratio for any CSP. This elegant picture, however, does not apply for CSP instances that are perfectly satisfiable, due to the imperfect completeness inherent in the Unique Games Conjecture. This work is motivated by the pursuit of a better understanding of the approximability of perfectly satisfiable instances of CSPs. We prove that an “almost Unique” version of Label Cover can be approximated within a constant factor on satisfiable instances. Our main conceptual contribution is the formulation of a (hypergraph) version of Label Cover that we call V Label Cover . Assuming a conjecture concerning the inapproximability of V Label Cover on perfectly satisfiable instances, we prove the following implications: • There is an absolute constant c 0 such that for k ≥ 3, given a satisfiable instance of Boolean k CSP, it is hard to find an assignment satisfying more than c 0 k 2 /2 k fraction of the constraints. • Given a k uniform hypergraph, k ≥ 2, for all ε > 0, it is hard to tell if it is q strongly colorable or has no independent set with an ε fraction of vertices, where q =⌈ k +√ k 1/2⌉. • Given a k uniform hypergraph, k ≥ 3, for all ε > 0, it is hard to tell if it is ( k 1)rainbow colorable or has no independent set with an ε fraction of vertices.
more »
« less
Conditional Dichotomy of Boolean Ordered Promise CSPs
Promise Constraint Satisfaction Problems (PCSPs) are a generalization ofConstraint Satisfaction Problems (CSPs) where each predicate has a strong and aweak form and given a CSP instance, the objective is to distinguish if thestrong form can be satisfied vs. even the weak form cannot be satisfied. Sincetheir formal introduction by Austrin, Guruswami, and H\aa stad, there has beena flurry of works on PCSPs [BBKO19,KO19,WZ20]. The key tool in studying PCSPsis the algebraic framework developed in the context of CSPs where the closureproperties of the satisfying solutions known as the polymorphisms are analyzed. The polymorphisms of PCSPs are much richer than CSPs. In the Boolean case, westill do not know if dichotomy for PCSPs exists analogous to Schaefer'sdichotomy result for CSPs. In this paper, we study a special case of BooleanPCSPs, namely Boolean Ordered PCSPs where the Boolean PCSPs have the predicate$x \leq y$. In the algebraic framework, this is the special case of BooleanPCSPs when the polymorphisms are monotone functions. We prove that BooleanOrdered PCSPs exhibit a computational dichotomy assuming the Rich 2to1Conjecture [BKM21] which is a perfect completeness surrogate of the UniqueGames Conjecture. Assuming the Rich 2to1 Conjecture, we prove that a Boolean Ordered PCSP canbe solved in polynomial time if for every $\epsilon>0$, it has polymorphismswhere each coordinate has Shapley value at most $\epsilon$, else it is NPhard.The algorithmic part of our dichotomy is based on a structural lemma thatBoolean monotone functions with each coordinate having low Shapley value havearbitrarily large threshold functions as minors. The hardness part proceeds byshowing that the Shapley value is consistent under a uniformly random 2to1minor. Of independent interest, we show that the Shapley value can beinconsistent under an adversarial 2to1 minor.
more »
« less
 Award ID(s):
 2228287
 NSFPAR ID:
 10396375
 Date Published:
 Journal Name:
 TheoretiCS
 Volume:
 Volume 2
 ISSN:
 27514838
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this


Chakrabarti, Amit ; Swamy, Chaitanya (Ed.)We analyze the sketching approximability of constraint satisfaction problems on Boolean domains, where the constraints are balanced linear threshold functions applied to literals. In particular, we explore the approximability of monarchylike functions where the value of the function is determined by a weighted combination of the vote of the first variable (the president) and the sum of the votes of all remaining variables. The pure version of this function is when the president can only be overruled by when all remaining variables agree. For every k ≥ 5, we show that CSPs where the underlying predicate is a pure monarchy function on k variables have no nontrivial sketching approximation algorithm in o(√n) space. We also show infinitely many weaker monarchy functions for which CSPs using such constraints are nontrivially approximable by O(log(n)) space sketching algorithms. Moreover, we give the first example of sketching approximable asymmetric Boolean CSPs. Our results work within the framework of Chou, Golovnev, Sudan, and Velusamy (FOCS 2021) that characterizes the sketching approximability of all CSPs. Their framework can be applied naturally to get a computeraided analysis of the approximability of any specific constraint satisfaction problem. The novelty of our work is in using their work to get an analysis that applies to infinitely many problems simultaneously.more » « less

Chakrabarti, Amit ; Swamy, Chaitanya (Ed.)A Boolean maximum constraint satisfaction problem, MaxCSP(f), is specified by a predicate f:{1,1}^k → {0,1}. An nvariable instance of MaxCSP(f) consists of a list of constraints, each of which applies f to k distinct literals drawn from the n variables. For k = 2, Chou, Golovnev, and Velusamy [Chou et al., 2020] obtained explicit ratios characterizing the √ nspace streaming approximability of every predicate. For k ≥ 3, Chou, Golovnev, Sudan, and Velusamy [Chou et al., 2022] proved a general dichotomy theorem for √ nspace sketching algorithms: For every f, there exists α(f) ∈ (0,1] such that for every ε > 0, MaxCSP(f) is (α(f)ε)approximable by an O(log n)space linear sketching algorithm, but (α(f)+ε)approximation sketching algorithms require Ω(√n) space. In this work, we give closedform expressions for the sketching approximation ratios of multiple families of symmetric Boolean functions. Letting α'_k = 2^{(k1)} (1k^{2})^{(k1)/2}, we show that for odd k ≥ 3, α(kAND) = α'_k, and for even k ≥ 2, α(kAND) = 2α'_{k+1}. Thus, for every k, kAND can be (2o(1))2^{k}approximated by O(log n)space sketching algorithms; we contrast this with a lower bound of Chou, Golovnev, Sudan, Velingker, and Velusamy [Chou et al., 2022] implying that streaming (2+ε)2^{k}approximations require Ω(n) space! We also resolve the ratio for the "atleast(k1)1’s" function for all even k; the "exactly(k+1)/21’s" function for odd k ∈ {3,…,51}; and fifteen other functions. We stress here that for general f, the dichotomy theorem in [Chou et al., 2022] only implies that α(f) can be computed to arbitrary precision in PSPACE, and thus closedform expressions need not have existed a priori. Our analyses involve identifying and exploiting structural "saddlepoint" properties of this dichotomy. Separately, for all threshold functions, we give optimal "biasbased" approximation algorithms generalizing [Chou et al., 2020] while simplifying [Chou et al., 2022]. Finally, we investigate the √ nspace streaming lower bounds in [Chou et al., 2022], and show that they are incomplete for 3AND, i.e., they fail to rule out (α(3AND})ε)approximations in o(√ n) space.more » « less

The noise sensitivity of a Boolean function f: {0,1}^n  > {0,1} is one of its fundamental properties. For noise parameter delta, the noise sensitivity is denoted as NS_{delta}[f]. This quantity is defined as follows: First, pick x = (x_1,...,x_n) uniformly at random from {0,1}^n, then pick z by flipping each x_i independently with probability delta. NS_{delta}[f] is defined to equal Pr [f(x) != f(z)]. Much of the existing literature on noise sensitivity explores the following two directions: (1) Showing that functions with low noisesensitivity are structured in certain ways. (2) Mathematically showing that certain classes of functions have low noise sensitivity. Combined, these two research directions show that certain classes of functions have low noise sensitivity and therefore have useful structure. The fundamental importance of noise sensitivity, together with this wealth of structural results, motivates the algorithmic question of approximating NS_{delta}[f] given an oracle access to the function f. We show that the standard sampling approach is essentially optimal for general Boolean functions. Therefore, we focus on estimating the noise sensitivity of monotone functions, which form an important subclass of Boolean functions, since many functions of interest are either monotone or can be simply transformed into a monotone function (for example the class of unate functions consists of all the functions that can be made monotone by reorienting some of their coordinates [O'Donnell, 2014]). Specifically, we study the algorithmic problem of approximating NS_{delta}[f] for monotone f, given the promise that NS_{delta}[f] >= 1/n^{C} for constant C, and for delta in the range 1/n <= delta <= 1/2. For such f and delta, we give a randomized algorithm performing O((min(1,sqrt{n} delta log^{1.5} n))/(NS_{delta}[f]) poly (1/epsilon)) queries and approximating NS_{delta}[f] to within a multiplicative factor of (1 +/ epsilon). Given the same constraints on f and delta, we also prove a lower bound of Omega((min(1,sqrt{n} delta))/(NS_{delta}[f] * n^{xi})) on the query complexity of any algorithm that approximates NS_{delta}[f] to within any constant factor, where xi can be any positive constant. Thus, our algorithm's query complexity is close to optimal in terms of its dependence on n. We introduce a novel descendingascending view of noise sensitivity, and use it as a central tool for the analysis of our algorithm. To prove lower bounds on query complexity, we develop a technique that reduces computational questions about query complexity to combinatorial questions about the existence of "thin" functions with certain properties. The existence of such "thin" functions is proved using the probabilistic method. These techniques also yield new lower bounds on the query complexity of approximating other fundamental properties of Boolean functions: the total influence and the bias.more » « less

Embedding properties of network realizations of dissipative reduced order models Jörn Zimmerling, Mikhail Zaslavsky,Rob Remis, Shasri Moskow, Alexander Mamonov, Murthy Guddati, Vladimir Druskin, and Liliana Borcea Mathematical Sciences Department, Worcester Polytechnic Institute https://www.wpi.edu/people/vdruskin Abstract Realizations of reduced order models of passive SISO or MIMO LTI problems can be transformed to tridiagonal and blocktridiagonal forms, respectively, via dierent modications of the Lanczos algorithm. Generally, such realizations can be interpreted as ladder resistorcapacitorinductor (RCL) networks. They gave rise to network syntheses in the rst half of the 20th century that was at the base of modern electronics design and consecutively to MOR that tremendously impacted many areas of engineering (electrical, mechanical, aerospace, etc.) by enabling ecient compression of the underlining dynamical systems. In his seminal 1950s works Krein realized that in addition to their compressing properties, network realizations can be used to embed the data back into the state space of the underlying continuum problems. In more recent works of the authors Krein's ideas gave rise to socalled nitedierence Gaussian quadrature rules (FDGQR), allowing to approximately map the ROM statespace representation to its full order continuum counterpart on a judicially chosen grid. Thus, the state variables can be accessed directly from the transfer function without solving the full problem and even explicit knowledge of the PDE coecients in the interior, i.e., the FDGQR directly learns" the problem from its transfer function. This embedding property found applications in PDE solvers, inverse problems and unsupervised machine learning. Here we show a generalization of this approach to dissipative PDE problems, e.g., electromagnetic and acoustic wave propagation in lossy dispersive media. Potential applications include solution of inverse scattering problems in dispersive media, such as seismic exploration, radars and sonars. To x the idea, we consider a passive irreducible SISO ROM fn(s) = Xn j=1 yi s + σj , (62) assuming that all complex terms in (62) come in conjugate pairs. We will seek ladder realization of (62) as rjuj + vj − vj−1 = −shˆjuj , uj+1 − uj + ˆrj vj = −shj vj , (63) for j = 0, . . . , n with boundary conditions un+1 = 0, v1 = −1, and 4n real parameters hi, hˆi, ri and rˆi, i = 1, . . . , n, that can be considered, respectively, as the equivalent discrete inductances, capacitors and also primary and dual conductors. Alternatively, they can be viewed as respectively masses, spring stiness, primary and dual dampers of a mechanical string. Reordering variables would bring (63) into tridiagonal form, so from the spectral measure given by (62 ) the coecients of (63) can be obtained via a nonsymmetric Lanczos algorithm written in Jsymmetric form and fn(s) can be equivalently computed as fn(s) = u1. The cases considered in the original FDGQR correspond to either (i) real y, θ or (ii) real y and imaginary θ. Both cases are covered by the Stieltjes theorem, that yields in case (i) real positive h, hˆ and trivial r, rˆ, and in case (ii) real positive h,r and trivial hˆ,rˆ. This result allowed us a simple interpretation of (62) as the staggered nitedierence approximation of the underlying PDE problem [2]. For PDEs in more than one variables (including topologically rich datamanifolds), a nitedierence interpretation is obtained via a MIMO extensions in block form, e.g., [4, 3]. The main diculty of extending this approach to general passive problems is that the Stieltjes theory is no longer applicable. Moreover, the tridiagonal realization of a passive ROM transfer function (62) via the ladder network (63) cannot always be obtained in portHamiltonian form, i.e., the equivalent primary and dual conductors may change sign [1]. 100 Embedding of the Stieltjes problems, e.g., the case (i) was done by mapping h and hˆ into values of acoustic (or electromagnetic) impedance at grid cells, that required a special coordinate stretching (known as travel time coordinate transform) for continuous problems. Likewise, to circumvent possible nonpositivity of conductors for the nonStieltjes case, we introduce an additional complex sdependent coordinate stretching, vanishing as s → ∞ [1]. This stretching applied in the discrete setting induces a diagonal factorization, removes oscillating coecients, and leads to an accurate embedding for moderate variations of the coecients of the continuum problems, i.e., it maps discrete coecients onto the values of their continuum counterparts. Not only does this embedding yields an approximate linear algebraic algorithm for the solution of the inverse problems for dissipative PDEs, it also leads to new insight into the properties of their ROM realizations. We will also discuss another approach to embedding, based on KreinNudelman theory [5], that results in special datadriven adaptive grids. References [1] Borcea, Liliana and Druskin, Vladimir and Zimmerling, Jörn, A reduced order model approach to inverse scattering in lossy layered media, Journal of Scientic Computing, V. 89, N1, pp. 136,2021 [2] Druskin, Vladimir and Knizhnerman, Leonid, Gaussian spectral rules for the threepoint second dierences: I. A twopoint positive denite problem in a semiinnite domain, SIAM Journal on Numerical Analysis, V. 37, N 2, pp.403422, 1999 [3] Druskin, Vladimir and Mamonov, Alexander V and Zaslavsky, Mikhail, Distance preserving model order reduction of graphLaplacians and cluster analysis, Druskin, Vladimir and Mamonov, Alexander V and Zaslavsky, Mikhail, Journal of Scientic Computing, V. 90, N 1, pp 130, 2022 [4] Druskin, Vladimir and Moskow, Shari and Zaslavsky, Mikhail LippmannSchwingerLanczos algorithm for inverse scattering problems, Inverse Problems, V. 37, N. 7, 2021, [5] Mark Adolfovich Nudelman The Krein String and Characteristic Functions of Maximal Dissipative Operators, Journal of Mathematical Sciences, 2004, V 124, pp 49184934 Go back to Plenary Speakers Go back to Speakers Go backmore » « less