skip to main content


Title: Thermal management and packaging of wide and ultra-wide bandgap power devices: a review and perspective
Abstract

Power semiconductor devices are fundamental drivers for advances in power electronics, the technology for electric energy conversion. Power devices based on wide-bandgap (WBG) and ultra-wide bandgap (UWBG) semiconductors allow for a smaller chip size, lower loss and higher frequency compared with their silicon (Si) counterparts, thus enabling a higher system efficiency and smaller form factor. Amongst the challenges for the development and deployment of WBG and UWBG devices is the efficient dissipation of heat, an unavoidable by-product of the higher power density. To mitigate the performance limitations and reliability issues caused by self-heating, thermal management is required at both device and package levels. Packaging in particular is a crucial milestone for the development of any power device technology; WBG and UWBG devices have both reached this milestone recently. This paper provides a timely review of the thermal management of WBG and UWBG power devices with an emphasis on packaged devices. Additionally, emerging UWBG devices hold good promise for high-temperature applications due to their low intrinsic carrier density and increased dopant ionization at elevated temperatures. The fulfillment of this promise in system applications, in conjunction with overcoming the thermal limitations of some UWBG materials, requires new thermal management and packaging technologies. To this end, we provide perspectives on the relevant challenges, potential solutions and research opportunities, highlighting the pressing needs for device–package electrothermal co-design and high-temperature packages that can withstand the high electric fields expected in UWBG devices.

 
more » « less
Award ID(s):
2100504 2230412
NSF-PAR ID:
10397514
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Physics D: Applied Physics
Volume:
56
Issue:
9
ISSN:
0022-3727
Page Range / eLocation ID:
Article No. 093001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the ever-growing landscape of electrical power demand, the future of power electronics module packaging lies in the realm of wide-bandgap (WBG) materials, including silicon carbide (SiC), gallium nitride (GaN), and cutting-edge ultra WBG (UWBG) materials like diamond, aluminum nitride (AlN), and hexagonal-boron nitride (h-BN). These materials offer superior properties to traditional silicon-based devices, promising higher power density, reduced weight, and increased operating temperature, voltage, and frequency. However, pushing the boundaries for power electronics modules presents challenges in insulation systems as the encapsulation material and the ceramic substrate may not withstand the functional parameters, potentially leading to unfavorable conditions like high field stress and partial discharge (PD), ultimately resulting in insulation failure. This paper presents a thorough analysis of the characteristics of the electrical insulation materials used in power electronics devices based on the research in WBG packaging conducted in recent years. The significance of maximum electric field stress at triple points (TPs) is examined. Furthermore, the paper reviews the strategies and techniques employed to mitigate the challenges related to maximum field stress and PDs in both encapsulation and substrate materials. It is concluded that the mitigation strategies are promising in improving insulation systems for packaging, but the studies lack their implementation under actual operating conditions of WBG power modules. 
    more » « less
  2. Abstract

    Multidimensional power devices can achieve performance beyond conventional limits by deploying charge‐balanced p‐n junctions. A key obstacle to developing such devices in many wide‐bandgap (WBG) and ultra‐wide bandgap (UWBG) semiconductors is the difficulty of native p‐type doping. Here the WBG nickel oxide (NiO) as an alternative p‐type material is investigated. The acceptor concentration (NA) in NiO is modulated by oxygen partial pressure during magnetron sputtering and characterized using a p‐n+heterojunction diode fabricated on gallium oxide (Ga2O3) substrate. Capacitance and breakdown measurements reveal a tunableNAfrom < 1018 cm−3to 2×1018 cm−3with the practical breakdown field (EB) of 3.8 to 6.3 MV cm−1. ThisNArange allows for charge balance to n‐type region with reasonable process latitude, andEBis high enough to pair with many WBG and UWBG semiconductors. The extractedNAis then used to design a multidimensional Ga2O3diode with NiO field‐modulation structure. The diodes fabricated with two differentNAboth achieve 8000 V breakdown voltage and 4.7 MV cm−1average electric field. This field is over three times higher than the best report in prior multi‐kilovolt lateral devices. These results show the promise of p‐type NiO for pushing the performance limits of power devices.

     
    more » « less
  3. Edge termination is the enabling building block of power devices to exploit the high breakdown field of wide bandgap (WBG) and ultra-wide bandgap (UWBG) semiconductors. This work presents a heterogeneous junction termination extension (JTE) based on p-type nickel oxide (NiO) for gallium oxide (Ga2O3) devices. Distinct from prior JTEs usually made by implantation or etch, this NiO JTE is deposited on the surface of Ga2O3 by magnetron sputtering. The JTE consists of multiple NiO layers with various lengths to allow for a graded decrease in effective charge density away from the device active region. Moreover, this surface JTE has broad design window and process latitude, and its efficiency is drift-layer agnostic. The physics of this NiO JTE is validated by experimental applications into NiO/Ga2O3 p–n diodes fabricated on two Ga2O3 wafers with different doping concentrations. The JTE enables a breakdown voltage over 3.2 kV and a consistent parallel-plate junction field of 4.2 MV/cm in both devices, rendering a power figure of merit of 2.5–2.7 GW/cm2. These results show the great promise of the deposited JTE as a flexible, near ideal edge termination for WBG and UWBG devices, particularly those lacking high-quality homojunctions. 
    more » « less
  4. null (Ed.)
    Abstract Researchers have been extensively studying wide-bandgap (WBG) semiconductor materials such as gallium nitride (GaN) with an aim to accomplish an improvement in size, weight, and power of power electronics beyond current devices based on silicon (Si). However, the increased operating power densities and reduced areal footprints of WBG device technologies result in significant levels of self-heating that can ultimately restrict device operation through performance degradation, reliability issues, and failure. Typically, self-heating in WBG devices is studied using a single measurement technique while operating the device under steady-state direct current measurement conditions. However, for switching applications, this steady-state thermal characterization may lose significance since the high power dissipation occurs during fast transient switching events. Therefore, it can be useful to probe the WBG devices under transient measurement conditions in order to better understand the thermal dynamics of these systems in practical applications. In this work, the transient thermal dynamics of an AlGaN/GaN high electron mobility transistor (HEMT) were studied using thermoreflectance thermal imaging and Raman thermometry. Also, the proper use of iterative pulsed measurement schemes such as thermoreflectance thermal imaging to determine the steady-state operating temperature of devices is discussed. These studies are followed with subsequent transient thermal characterization to accurately probe the self-heating from steady-state down to submicrosecond pulse conditions using both thermoreflectance thermal imaging and Raman thermometry with temporal resolutions down to 15 ns. 
    more » « less
  5. Abstract Breakdown voltage (BV) is arguably one of the most critical parameters for power devices. While avalanche breakdown is prevailing in silicon and silicon carbide devices, it is lacking in many wide bandgap (WBG) and ultra-wide bandgap (UWBG) devices, such as the gallium nitride high electron mobility transistor and existing UWBG devices, due to the deployment of junction-less device structures or the inherent material challenges of forming p-n junctions. This paper starts with a survey of avalanche and non-avalanche breakdown mechanisms in WBG and UWBG devices, followed by the distinction between the static and dynamic BV. Various BV characterization methods, including the static and pulse I – V sweep, unclamped and clamped inductive switching, as well as continuous overvoltage switching, are comparatively introduced. The device physics behind the time- and frequency-dependent BV as well as the enabling device structures for avalanche breakdown are also discussed. The paper concludes by identifying research gaps for understanding the breakdown of WBG and UWBG power devices. 
    more » « less