Abstract A high‐resolution ocean model is used to characterize the circulation and cross‐shelf exchanges in the Brazilian/Uruguayan portion of the southwestern Atlantic shelf. Cross‐shelf exchanges are strongly modulated by the bottom topography. There is ∼1.2 Sv of on‐shelf transport between 21°S and 25.2°S, and ∼1.6 Sv of off‐shelf transport between 35°S and 25.2°S. North of 25.2°S, the cross‐shelf exchanges show a two‐layer structure with an off‐shelf flow in the upper 50m and on‐shelf flow deep below. A Lagrangian diagnostic shows that ∼0.15 Sv of deep waters from the Brazil Current (z > 200 m) are injected into the shelf. Mixing with ambient waters produces a spicier (warmer and saltier) water mass, which is ejected into the open ocean in the southern region. Backward in‐time particle's trajectories analysis reveals that 95% of the southward shelf transport at 32°S originates in the open ocean at 22°S. Our model diagnostics show that there is a very limited connectivity between the shelf regions north and south of Cabo Frio. Correlation analysis shows no significant influence of El Niño Southern Oscillation (ENSO) and Southern Annular Mode (SAM) on the time variability of the cross‐shelf transport. Cross‐shelf transports, however, are significantly correlated with the local wind stress variability. 
                        more » 
                        « less   
                    
                            
                            Cross-Shelf Exchange in the Southwestern Atlantic Shelf: Climatology and Extreme Events
                        
                    
    
            The variability and drivers of the cross-shelf exchanges between the Southwestern Atlantic shelf and the open ocean from 30 to 40°S are analyzed using a high-resolution ocean model reanalysis at daily resolution. The model's performance was first evaluated using altimetry data, and independent mooring and hydrographic data collected in the study area. Model transports are in overall good agreement with all other estimates. The record-mean (1993–2018) cross-shore transport is offshore, 2.09 ± 1.60 Sv. 73% of the shelf-open ocean exchange occurs in the vicinity of Brazil-Malvinas Confluence (~38°S) and 20% near 32°S. This outflow is mostly contributed by northward alongshore transport through 40°S (63%) and the remaining by southward transport through 30°S (37%). The cross-shore flow presents weak seasonal variations, with a maximum in austral summer, and high variability at subannual and weekly time scales. The latter is mainly associated with abrupt wind changes generated by synoptic atmospheric systems. Alongshore wind variations set up sea-level changes in the inner shelf which in turn drive large anomalies in the associated geostrophic alongshore flow. The difference in inner shelf sea-level anomalies at 30 and 40°S is a good indicator of cross-shelf exchange at seasonal and shorter time scales. Episodes of extreme offshore transport that reach up to 9.45 Sv and last about 2 days are driven by convergence of these alongshore flows over the shelf. Large exports of shelf waters lead to freshening of the upper open ocean as revealed by in-situ and satellite observations. In contrast, onshore extreme events drive open ocean water intrusions of up to 6.53 Sv and last <4 days. These inflows, particularly the subtropical waters from the Brazil Current, induce a substantial salinification of the outer shelf. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1645887
- PAR ID:
- 10398935
- Date Published:
- Journal Name:
- Frontiers in Marine Science
- Volume:
- 9
- ISSN:
- 2296-7745
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The strong interaction between the Brazil Current and the adjacent shelf is clearly visible in satellite‐derived products (sea surface temperature, salinity, and chlorophyll‐a concentration). Assessments of circulation features and cross‐shelf exchanges from these products are, however, limited to the surface layer. Here we analyze the regional circulation and dynamics using the results of a suite of process‐oriented, high‐resolution numerical experiments. Passive tracers and Lagrangian floats characterize the exchanges between the shelf and the open ocean, identifying regions of high variability, and assessing the contribution of small‐scale eddies to the cross‐shelf mass exchanges. We estimate that 0.2–0.4 Sv of the shelf transport variability between 34°S and 25°S comes from ocean internal variability which represents ∼50%–70% of the total variability. Between 25°S and 21°S, internal ocean variability represents more than 90% of the shelf transport variability. We find that generation of cyclonic eddies is more frequent (>15% of the time) at the shelfbreak bights. The core of these eddies contains fresher, colder, and more nutrient‐rich shelf waters. Maps of satellite chlorophyll‐a concentration suggest that the horizontal and vertical exchanges of mass associated with these eddies are a critical element of the primary production cycle.more » « less
- 
            Abstract Rip currents are generated by surfzone wave breaking and are ejected offshore inducing inner-shelf flow spatial variability (eddies). However, surfzone effects on the inner-shelf flow spatial variability have not been studied in realistic models that include both shelf and surfzone processes. Here, these effects are diagnosed with two nearly identical twin realistic simulations of the San Diego Bight over summer to fall where one simulation includes surface gravity waves (WW) and the other that does not (NW). The simulations include tides, weak to moderate winds, internal waves, submesoscale processes, and have surfzone width L sz of 96(±41) m (≈ 1 m significant wave height). Flow spatial variability metrics, alongshore root mean square vorticity, divergence, and eddy cross-shore velocity, are analyzed in a L sz normalized cross-shore coordinate. At the surface, the metrics are consistently (> 70%) elevated in the WW run relative to NW out to 5 L sz offshore. At 4 L sz offshore, WW metrics are enhanced over the entire water column. In a fixed coordinate appropriate for eddy transport, the eddy cross-shore velocity squared correlation betweenWWand NW runs is < 0.5 out to 1.2 km offshore or 12 time-averaged L sz . The results indicate that the eddy tracer ( e.g. , larvae) transport and dispersion across the inner-shelf will be significantly different in the WW and NW runs. The WW model neglects specific surfzone vorticity generation mechanisms. Thus, these inner-shelf impacts are likely underestimated. In other regions with larger waves, impacts will extend farther offshore.more » « less
- 
            Abstract The Amazon River is a large source of terrigenous dissolved organic carbon (tDOC) to the Atlantic Ocean. The fate of this tDOC in the ocean remains unclear despite its importance to the global carbon cycle. Here, we used two decades of satellite ocean color to describe variability in tDOC in the Amazon River plume. Our analyses showed that tDOC distribution has a distinct seasonal pattern, reaching northwest toward the Caribbean during high discharge periods, and moving eastward entrained in the North Brazil Current retroflection during low discharge periods. Elevated tDOC content extended beyond the shelfbreak in all months of the year, suggesting that cross‐shelf carbon transport occurs year‐round. Maximum variability was found at the plume core, where seasonality accounted for 40% of the total variance, while interannual variability accounted for 15% of the variance. Our results revealed a seasonal pattern in tDOC removal over the shelf with increased consumption in May when river discharge is high. Anomalies in tDOC removal over the shelf with respect to the seasonal cycle were significantly correlated with anomalies in tDOC concentration offshore of the shelfbreak with a lag of 30–40 days, so that anomalously high inshore tDOC removal was associated with anomalously low tDOC content offshore. This suggests that variability in the offshore transport of tDOC in the Amazon River plume is modulated by interannual changes in tDOC removal over the shelf.more » « less
- 
            Abstract Theoretical understanding of the upward vertical motion into the surface layer during coastal upwelling is often based on steady linear Ekman dynamics. In steady linear theory, the divergence of surface transport that leads to upwelling is associated with either overlap of the frictional boundary layers over the inner shelf or wind stress curl farther offshore. However, the alongshore current associated with a coastal upwelling front is associated with relative vorticity which modifies surface transport. A new nonlinear theory shows that, under spatially uniform wind forcing, the fraction of Ekman transport upwelled over the inner shelf tends to decrease with increasing slope Burger numberSas the baroclinic alongshore jet strengthens and cyclonic vorticity increases. Similar patterns are shown in a set of idealized numerical experiments. Unsteadiness in the alongshore flow, neglected in the theory, strongly influences the cross-shelf distribution of upwelling in the numerical model at locations offshore of the inner shelf and near the core of the upwelling jet. The theory and numerical modeling are extended to explore the effect of a large-scale alongshore pressure gradient force (PGF) that forms in response to alongshore variations in wind stress. At highS, a baroclinic PGF is associated with a shallow onshore return flow, but the fraction of modeled upwelling that occurs over the inner shelf is not strongly affected. The results emphasize that the strength and location of the alongshore jet strongly influence the cross-shelf distribution of coastal upwelling in the presence of stratification and a sloping bottom. Significance StatementWind-driven coastal upwelling is important for supplying nutrients to phytoplankton at the base of marine ecosystems. This study uses simple models to investigate factors that determine where upwelling of water into the surface layer occurs when wind blows along the coastline. With a larger difference in density between the surface and bottom layers, a steeply sloping seafloor, and at latitudes closer to the equator, the upwelling region shifts farther offshore because of the strength and location of faster ocean currents that flow along the coastline.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    