We report thermal and mechanical responses accompanying electrical characteristics of depletion mode GaN high electron mobility transistors exposed to gamma radiation up to 107rads. Changes in the lattice strain and temperature were simultaneously characterized by changes in the phonon frequency of E2(high) and A1(LO) from the on-state and unpowered/pinched off reference states. Lower doses of radiation improved electrical properties; however, degradation initiated at about 106rads. We observed about 16% decrease in the saturation current and 6% decrease in the transconductance at the highest dose. However, a leakage current increase by three orders of magnitude was the most notable radiation effect. We observed temperature increase by 40% and mechanical stress increase by a factor of three at a dose of 107rads compared to the pristine devices. Spatial mapping of mechanical stress along the channel identifies the gate region as a mechanically affected area, whereas the thermal degradation was mostly uniform. Transmission electron microscopy showed contrast changes reflecting a high vacancy concentration in the gate region. These findings suggest that localized stress (mechanical hotspots) may increase vulnerability to radiation damage by accommodating higher concentration of defects that promote the leakage current.
This content will become publicly available on August 1, 2023
- Award ID(s):
- 2015795
- Publication Date:
- NSF-PAR ID:
- 10399308
- Journal Name:
- ECS Journal of Solid State Science and Technology
- Volume:
- 11
- Issue:
- 8
- Page Range or eLocation-ID:
- 085008
- ISSN:
- 2162-8769
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The demand for high power and high-frequency radio frequency (RF) power amplifiers makes AlGaN/GaN high electron mobility transistors (HEMTs) an attractive option due to their large critical field, high saturation velocity, and reduced device footprint as compared to Si-based counterparts. However, due to the high operating power densities, intense device self-heating occurs, which degrades the electrical performance and compromises the device’s reliability. The self-heating behavior of AlGaN/GaN HEMTs is known to be not solely a function of the dissipated power but is highly bias-dependent. As the operation of RF power amplifiers involves alteration of the device operation from fully-open to pinched-off channel conditions, it is critical to experimentally map the full channel temperature profile as a function of bias conditions. However, such measurement is difficult using optical thermography techniques due to the lack of optical access underneath the gate electrode, where the peak temperature is expected to occur.
To address this challenge, an AlGaN/GaN HEMT employing a transparent gate made of indium tin oxide (ITO) was fabricated, which enables full channel temperature mapping using Raman spectroscopy. It was found that the maximum channel temperature rise under a partially pinched-off condition is more than ∼93% higher than that for an openmore »
-
Embedding properties of network realizations of dissipative reduced order models Jörn Zimmerling, Mikhail Zaslavsky,Rob Remis, Shasri Moskow, Alexander Mamonov, Murthy Guddati, Vladimir Druskin, and Liliana Borcea Mathematical Sciences Department, Worcester Polytechnic Institute https://www.wpi.edu/people/vdruskin Abstract Realizations of reduced order models of passive SISO or MIMO LTI problems can be transformed to tridiagonal and block-tridiagonal forms, respectively, via dierent modications of the Lanczos algorithm. Generally, such realizations can be interpreted as ladder resistor-capacitor-inductor (RCL) networks. They gave rise to network syntheses in the rst half of the 20th century that was at the base of modern electronics design and consecutively to MOR that tremendously impacted many areas of engineering (electrical, mechanical, aerospace, etc.) by enabling ecient compression of the underlining dynamical systems. In his seminal 1950s works Krein realized that in addition to their compressing properties, network realizations can be used to embed the data back into the state space of the underlying continuum problems. In more recent works of the authors Krein's ideas gave rise to so-called nite-dierence Gaussian quadrature rules (FDGQR), allowing to approximately map the ROM state-space representation to its full order continuum counterpart on a judicially chosen grid. Thus, the state variables can be accessed directly from themore »
-
ABSTRACT Low-mass X-ray binaries have long been theorized as potential sources of continuous gravitational-wave radiation, yet there is no observational evidence from recent LIGO/Virgo observing runs. Even for the theoretically ‘loudest’ source, Sco X-1, the upper limit on gravitational-wave strain has been pushed ever lower. Such searches require precise measurements of the source properties for sufficient sensitivity and computational feasibility. Collating over 20 yr of high-quality spectroscopic observations of the system, we present a precise and comprehensive ephemeris for Sco X-1 through radial velocity measurements, performing a full homogeneous re-analysis of all relevant data sets and correcting previous analyses. Our Bayesian approach accounts for observational systematics and maximizes not only precision, but also the fidelity of uncertainty estimates – crucial for informing principled continuous-wave searches. Our extensive data set and analysis also enables us to construct the highest signal-to-noise ratio, highest resolution phase-averaged spectrum of a low-mass X-ray binary to date. Doppler tomography reveals intriguing transient structures present in the accretion disc and flow driven by modulation of the accretion rate, necessitating further characterization of the system at high temporal and spectral resolution. Our ephemeris corrects and supersedes previous ephemerides, and provides a factor three reduction in the number of templates in themore »
-
Purpose AlSi10Mg alloy is commonly used in laser powder bed fusion due to its printability, relatively high thermal conductivity, low density and good mechanical properties. However, the thermal conductivity of as-built materials as a function of processing (energy density, laser power, laser scanning speed, support structure) and build orientation, are not well explored in the literature. This study aims to elucidate the relationship between processing, microstructure, and thermal conductivity. Design/methodology/approach The thermal conductivity of laser powder bed fusion (L-PBF) AlSi10Mg samples are investigated by the flash diffusivity and frequency domain thermoreflectance (FDTR) techniques. Thermal conductivities are linked to the microstructure of L-PBF AlSi10Mg, which changes with processing conditions. The through-plane exceeded the in-plane thermal conductivity for all energy densities. A co-located thermal conductivity map by frequency domain thermoreflectance (FDTR) and crystallographic grain orientation map by electron backscattered diffraction (EBSD) was used to investigate the effect of microstructure on thermal conductivity. Findings The highest through-plane thermal conductivity (136 ± 2 W/m-K) was achieved at 59 J/mm 3 and exceeded the values reported previously. The in-plane thermal conductivity peaked at 117 ± 2 W/m-K at 50 J/mm 3 . The trend of thermal conductivity reducing with energy density at similar porosity was primarily due to the reduced grain size producingmore »