skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effective Brain Connectivity Extraction by Frequency-Domain Convergent Cross-Mapping (FDCCM) and its Application in Parkinson's Disease Classification
Objective: Inferring causal or effective connectivity between measured timeseries is crucial to understanding directed interactions in complex systems. This task is especially challenging in the brain as the underlying dynamics are not well-understood. This paper aims to introduce a novel causality measure called frequency-domain convergent cross-mapping (FDCCM) that utilizes frequency-domain dynamics through nonlinear state-space reconstruction. Method: Using synthesized chaotic timeseries, we investigate general applicability of FDCCM at different causal strengths and noise levels. We also apply our method on two resting-state Parkinson's datasets with 31 and 54 subjects, respectively. To this end, we construct causal networks, extract network features, and perform machine learning analysis to distinguish Parkinson's disease patients (PD) from age and gender-matched healthy controls (HC). Specifically, we use the FDCCM networks to compute the betweenness centrality of the network nodes, which act as features for the classification models. Result: The analysis on simulated data showed that FDCCM is resilient to additive Gaussian noise, making it suitable for real-world applications. Our proposed method also decodes scalp-EEG signals to classify the PD and HC groups with approximately 97% leave-one-subject-out cross-validation accuracy. We compared decoders from six cortical regions to find that features derived from the left temporal lobe lead to a higher classification accuracy of 84.5% compared to other regions. Moreover, when the classifier trained using FDCCM networks from one dataset was tested on an independent out-of-sample dataset, it attained an accuracy of 84%. This accuracy is significantly higher than correlational networks (45.2%) and CCM networks (54.84%). Significance: These findings suggest that our spectral-based causality measure can improve classification performance and reveal useful network biomarkers of Parkinson's disease.  more » « less
Award ID(s):
1954749
PAR ID:
10399477
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE Transactions on Biomedical Engineering
ISSN:
0018-9294
Page Range / eLocation ID:
1 to 11
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The goal of this paper is to use graph theory network measures derived from non-invasive electroencephalography (EEG) to develop neural decoders that can differentiate Parkinson's disease (PD) patients from healthy controls (HC). EEG signals from 27 patients and 27 demographically matched controls from New Mexico were analyzed by estimating their functional networks. Data recorded from the patients during ON and OFF levodopa sessions were included in the analysis for comparison. We used betweenness centrality of estimated functional networks to classify the HC and PD groups. The classifiers were evaluated using leave-one-out cross-validation. We observed that the PD patients (on and off medication) could be distinguished from healthy controls with 89% accuracy – approximately 4% higher than the state-of-the-art on the same dataset. This work shows that brain network analysis using extracranial resting-state EEG can discover patterns of interactions indicative of PD. This approach can also be extended to other neurological disorders. 
    more » « less
  2. As our population ages, neurological impairments and degeneration of the musculoskeletal system yield gait abnormalities, which can significantly reduce quality of life. Gait rehabilitative therapy has been widely adopted to help patients maximize community participation and living independence. To further improve the precision and efficiency of rehabilitative therapy, more objective methods need to be developed based on sensory data. In this paper, an algorithmic framework is proposed to provide classification of gait disorders caused by two common neurological diseases, stroke and Parkinson's Disease (PD), from ground contact force (GCF) data. An advanced machine learning method, multi-task feature learning (MTFL), is used to jointly train classification models of a subject's gait in three classes, post-stroke, PD and healthy gait. Gait parameters related to mobility, balance, strength and rhythm are used as features for the classification. Out of all the features used, the MTFL models capture the more important ones per disease, which will help provide better objective assessment and therapy progress tracking. To evaluate the proposed methodology we use data from a human participant study, which includes five PD patients, three post-stroke patients, and three healthy subjects. Despite the diversity of abnormalities, the evaluation shows that the proposed approach can successfully distinguish post-stroke and PD gait from healthy gait, as well as post-stroke from PD gait, with Area Under the Curve (AUC) score of at least 0.96. Moreover, the methodology helps select important gait features to better understand the key characteristics that distinguish abnormal gaits and design personalized treatment. 
    more » « less
  3. Parkinson's Disease (PD) is one of the most prevalent neurodegenerative diseases that affects tens of millions of Americans. PD is highly progressive and heterogeneous. Quite a few studies have been conducted in recent years on predictive or disease progression modeling of PD using clinical and biomarkers data. Neuroimaging, as another important information source for neurodegenerative disease, has also arisen considerable interests from the PD community. In this paper, we propose a deep learning method based on Graph Convolutional Networks (GCN) for fusing multiple modalities of brain images in relationship prediction which is useful for distinguishing PD cases from controls. On Parkinson's Progression Markers Initiative (PPMI) cohort, our approach achieved 0.9537±0.0587 AUC, compared with 0.6443±0.0223 AUC achieved by traditional approaches such as PCA. 
    more » « less
  4. Brain Connectivity (BC) features of multichannel EEG have been proposed for Motor Imagery (MI) decoding in Brain-Computer Interface applications, but the advantages of BC features vs. single-channel features are unclear. Here, we consider three BC features, i.e., Phase Locking Value (PLV), Granger Causality, and weighted Phase Lag Index, and investigate the relationship between the most central nodes in BC-based networks and the most influential EEG channels in single-channel classification based on common spatial pattern filtering. Then, we compare the accuracy of MI decoders that use BC features in source vs. sensor space. Applied to the BCI Competition VI Dataset 2a (left- vs. right-hand MI decoding), our study found that PLV in sensor space achieves the highest classification accuracy among BC features and has similar performance compared to single-channel features, while the transition from sensor to source space reduces the average accuracy of BC features. Across all BC measures, the network topology is similar in left- vs. right-hand MI tasks, and the most central nodes in BC-based networks rarely overlap with the most influential channels in single-channel classification. 
    more » « less
  5. Freezing of gait (FoG), which implies a brief absence or reduction of ability to walk, is one of the most common symptoms of Parkinson's Disease (PD). Predicting FoG episodes in time can prevent their onset by providing specific cues to the patients. This paper presents a deep learning approach to predict FoG episodes using a Long Short-Term Memory network (LSTM). It also identifies key issues and concepts which have not been dwelled upon before in the existing literature, paving the way to a more systematic methodology for future work. We evaluate our approach using a publicly available dataset that includes accelerometer readings from 10 PD patients. We achieve up to 89% prediction accuracy with an average prediction time of 1.42 s using a subject-independent model. 
    more » « less