Abstract Gold nanoparticles (AuNPs) were synthesized in microfluidic mixers by means of response surface methodology (RSM). A reverse‐staggered herringbone micromixer was employed and reaction temperature, concentration ratio of reactants, Reynolds number, and pH of chloroauric acid were varied, with desired responses being particle size and peak intensity from UV spectroscopy. RSM was performed by simultaneously optimizing variable ranges to identify the best fit of polynomial equations to experimental data. Results revealed the individual and synergistic roles of each reaction variable on particle size and UV peak intensity, leading to identification of the largest design space. The effect of reaction variables on AuNP synthesis and particle size was confirmed in serpentine mixers.
more »
« less
Infrared compatible rapid mixer to probe millisecond chemical kinetics
Fast microfluidic mixers are a valuable tool for studying solution-phase chemical reaction kinetics and molecular processes with spectroscopy. However, microfluidic mixers that are compatible with infrared vibrational spectroscopy have seen only limited development due to the poor infrared transparency of the current microfabrication material. We describe the design, fabrication, and characterization of CaF2-based continuous flow turbulent mixers, which are capable of measuring kinetics in the millisecond time window with infrared spectroscopy, when integrated into an infrared microscope. Kinetics measurements demonstrate the ability to resolve relaxation processes with 1 millisecond time resolution, and straightforward improvements are described that should result in sub-100 µs time-resolution.
more »
« less
- Award ID(s):
- 2011854
- PAR ID:
- 10400079
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Review of Scientific Instruments
- Volume:
- 94
- Issue:
- 3
- ISSN:
- 0034-6748
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
X-ray spectroscopies are uniquely poised to describe the geometric and electronic structure of metalloenzyme active sites under a wide variety of sample conditions. UV/Vis (ultraviolet/visible) spectroscopy is a similarly well-established technique that can identify and quantify catalytic intermediates. The work described here reports the first simultaneous collection of full in situ UV/Vis and high-energy resolution fluorescence detected x-ray absorption spectra. Implementation of a fiber optic UV/Vis spectrometer and parabolic mirror setup inside the dual array valence emission spectrometer allowing for simultaneous measurement of microfluidic flow and mixing samples at the Photon-In Photon-Out X-ray Spectroscopy beamline is described, and initial results on ferricyanide and a dilute iron protein are presented. In conjunction with advanced microfluidic mixing techniques, this will allow for the measurement and quantification of highly reactive catalytic intermediates at reaction-relevant temperatures on the millisecond timescale while avoiding potential complications induced by freeze quenching samples.more » « less
-
An approach is described for spectrally parallel hyperspectral mid-infrared imaging with spatial resolution dictated by fluorescence imaging. Quantum cascade laser (QCL)-based dual-comb mid-infrared spectroscopy enables the acquisition of infrared spectra at high speed (<1 millisecond) through the generation of optical beat patterns and radio-frequency detection. The high-speed nature of the spectral acquisition is shown to support spectral mapping in microscopy measurements. Direct detection of the transmitted infrared beam yields high signal-to-noise spectral information, but long infrared wavelengths impose low diffraction-limited spatial resolution. The use of fluorescence detected photothermal infrared (F-PTIR) imaging provides high spatial resolution tied directly to the integrated IR absorption. Computational imaging using a multi-agent consensus equilibrium (MACE) approach combines the high spatial resolution of F-PTIR and the high spectral information of dual-comb infrared transmission in a single optimized equilibrium hyperspectral data cube.more » « less
-
Organic mixed ionic–electronic conductors (OMIECs) are a unique class of soft, conjugated polymeric materials. The simultaneous electronic and ionic transport of OMIECs enables a new type of device, namely, organic electrochemical transistors, among other emerging technologies. However, the dynamic nature—where charge transport, doping kinetics, and morphological changes occur concurrently—poses significant challenges in the characterization and understanding of OMIECs. Recent advances in in situ optical techniques, including ultraviolet–visible–near-infrared spectroscopy, Raman spectroscopy, and microscopy imaging, have provided valuable insights into the charge transport mechanisms and ionic doping dynamics spanning from the microscopic to the device scale. In this perspective, based on several archetypal OMIECs, we survey how spectroscopic signatures were used to reveal key physical processes in these materials. Looking forward, we propose that ultrafast spectroscopy and microscopy techniques—such as transient absorption spectroscopy, terahertz time-domain spectroscopy, pump–probe microscopy, and photothermal microscopy—hold great potential for uncovering more fundamental mechanisms of OMIEC operation, including quasiparticle dynamics, intrinsic electrical conductivity, and carrier mobility, which remain under-explored. Integrating optical characterization with electrochemical measurements will enable in operando studies on state-of-the-art devices, with results further refined by parallel advancements in theoretical modeling. Altogether, we envision in operando optical characterization with spatial, spectral, and temporal resolution across multiple scales as a powerful pathway to advance the understanding of OMIEC mechanisms and their structure–property relationships.more » « less
-
Advances in time-resolved structural techniques, mainly in macromolecular crystallography and small-angle X-ray scattering (SAXS), allow for a detailed view of the dynamics of biological macromolecules and reactions between binding partners. Of particular promise, are mix-and-inject techniques, which offer a wide range of experimental possibility as microfluidic mixers are used to rapidly combine two species just prior to data collection. Most mix-and-inject approaches rely on diffusive mixers, which have been effectively used within crystallography and SAXS for a variety of systems, but their success is dependent on a specific set of conditions to facilitate fast diffusion for mixing. The use of a new chaotic advection mixer designed for microfluidic applications helps to further broaden the types of systems compatible with time-resolved mixing experiments. The chaotic advection mixer can create ultra-thin, alternating layers of liquid, enabling faster diffusion so that even more slowly diffusing molecules, like proteins or nucleic acids, can achieve fast mixing on timescales relevant to biological reactions. This mixer was first used in UV–vis absorbance and SAXS experiments with systems of a variety of molecular weights, and thus diffusion speeds. Careful effort was also dedicated to making a loop-loading sample-delivery system that consumes as little sample as possible, enabling the study of precious, laboratory-purified samples. The combination of the versatile mixer with low sample consumption opens the door to many new applications for mix-and-inject studies.more » « less
An official website of the United States government
