skip to main content


Title: Twisted Crystalline Organic Semiconductor Photodetectors
Abstract

Optoelectronic properties of anisotropic crystals vary with direction requiring that the orientation of molecular organic semiconductor crystals is controlled in optoelectronic device active layers to achieve optimal performance. Here, a generalizable strategy to introduce periodic variations in the out‐of‐plane orientations of 5,11‐bis(triisopropylsilylethynyl)anthradithiophene (TIPS ADT) crystals is presented. TIPS ADT crystallized from the melt in the presence of 16 wt.% polyethylene (PE) forms banded spherulites of crystalline fibrils that twist in concert about the radial growth direction. These spherulites exhibit band‐dependent light absorption, photoluminescence, and Raman scattering depending on the local orientation of crystals. Mueller matrix imaging reveals strong circular extinction (CE), with TIPS ADT banded spherulites exhibiting domains of positive or negative CE signal depending on the crystal twisting sense. Furthermore, orientation‐dependent enhancement in charge injection and extraction in films of twisted TIPS ADT crystals compared to films of straight crystals is visualized in local conductive atomic force microscopy maps. This enhancement leads to 3.3‐ and 6.2‐times larger photocurrents and external quantum efficiencies, respectively, in photodetectors comprising twisted crystals than those comprising straight crystals.

 
more » « less
Award ID(s):
1849213
NSF-PAR ID:
10400487
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;   « less
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
33
Issue:
19
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Optically-active optoelectronic materials are of great interest for many applications, including chiral sensing and circularly polarized light emission. Traditionally, such applications have been enabled by synthetic strategies to design chiral organic semiconductors and conductors. Here, centrosymmetric tetrathiafulvalene (TTF) crystals are rendered chiral on the mesoscale by crystal twisting. During crystallization from the melt, helicoidal TTF fibers were observed to grow radially outwards from a nucleation centre as spherulites, twisting in concert about the growth direction. Because molecular crystals exhibit orientation-dependent refractive indices, periodic concentric bands associated with continually rotating crystal orientations were observed within the spherulites when imaged between crossed polarizers. Under certain conditions, concomitant crystal twisting and bending was observed, resulting in anomolous crystal optical behavior. X-ray diffraction measurements collected on different spherulite bands indicated no difference in the molecular packing between straight and twisted TTF crystals, as expected for microscopic twisting pitches between 20–200 μm. Mueller matrix imaging, however, revealed preferential absorption and refraction of left- or right-circularly polarized light in twisted crystals depending on the twist sense, either clockwise or counterclockwise, about the growth direction. Furthermore, hole mobilities of 2.0 ± 0.9 × 10 −6 cm 2 V −1 s −1 and 1.9 ± 0.8 × 10 −5 cm 2 V −1 s −1 were measured for straight and twisted TTF crystals deposited on organic field-effect transistor platforms, respectively, demonstrating that crystal twisting does not negatively impact charge transport in these systems. 
    more » « less
  2. Abstract

    The preparation of ring‐banded spherulites in poly(3‐butylthiophene) via controlled solvent evaporation of solution‐cast films is reported. The spherulites display unusual concentric ring‐banded structures under both polarized and unpolarized lights. The size of the ring‐banded spherulites is 300 ± 100 µm in diameter and the periodicity of the bands is 15 ± 2 µm. The periodic bands of the spherulite consist of alternating ridge and valley surface patterns and the crystalline lamellae in the bands are more or less parallel to the radial growth direction of the spherulites. Local lamellar bending and branching are observed analogous to that of classical non‐conjugated polymers. A possible diffusion‐induced rhythmic growth mechanism is proposed to interpret the formation of periodic banding of the spherulite.

     
    more » « less
  3. Abstract

    A great proportion of molecular crystals can be made to grow as twisted fibrils. Typically, this requires high crystallization driving forces that lead to spherulitic textures. Here, it is shown how micron size channels fabricated from poly(dimethylsiloxane) (PDMS) serve to collimate the circular polycrystalline growth fronts of optically banded spherulites of twisted crystals of three compounds, coumarin, 2,5‐bis(3‐dodecyl‐2‐thienyl)‐thiazolo[5,4‐d]thiazole, and tetrathiafulvalene. The relationships between helicoidal pitch, growth front coherence, and channel width are measured. As channels spill into open spaces, collimated crystals “diffract” via small angle branching. On the other hand, crystals grown together from separate channels whose bands are out of phase ultimately become a single in‐phase bundle of fibrils by a cooperative mechanism yet unknown. The isolation of a single twist sense in individual channels is described. We forecast that such chiral molecular crystalline channels may function as chiral optical wave guides.

     
    more » « less
  4. Abstract

    Optical second harmonic generation (SHG) is a nonlinear optical effect widely used for nonlinear optical microscopy and laser frequency conversion. Closed-form analytical solution of the nonlinear optical responses is essential for evaluating materials whose optical properties are unknown a priori. A recent open-source code, ♯SHAARP.si, can provide such closed form solutions for crystals with arbitrary symmetries, orientations, and anisotropic properties at asingleinterface. However, optical components are often in the form of slabs, thin films on substrates, and multilayer heterostructures with multiple reflections of both the fundamental and up to ten different SHG waves at each interface, adding significant complexity. Many approximations have therefore been employed in the existing analytical approaches, such as slowly varying approximation, weak reflection of the nonlinear polarization, transparent medium, high crystallographic symmetry, Kleinman symmetry, easy crystal orientation along a high-symmetry direction, phase matching conditions and negligible interference among nonlinear waves, which may lead to large errors in the reported material properties. To avoid these approximations, we have developed an open-source package named Second Harmonic Analysis of Anisotropic Rotational Polarimetry in Multilayers (♯SHAARP.ml). The reliability and accuracy are established by experimentally benchmarking with both the SHG polarimetry and Maker fringes using standard and commonly used nonlinear optical materials as well as twisted 2-dimensional heterostructures.

     
    more » « less
  5. Abstract

    Many molecular crystals (approximately one third) grow as twisted, helicoidal ribbons from the melt, and this preponderance is even higher in restricted classes of materials, for instance, charge‐transfer complexes. Previously, twisted crystallites of such complexes present an increase in carrier mobilities. Here, the effect of twisting on charge mobility is better analyzed for a monocomponent organic semiconductor, 2,5‐bis(3‐dodecyl‐2‐thienyl)‐thiazolo[5,4‐d]thiazole (BDT), that forms twisted crystals with varied helicoidal pitches and makes possible a correlation of twist strength with carrier mobility. Films are analyzed by X‐ray scattering and Mueller matrix polarimetry to characterize the microscale organization of the polycrystalline ensembles. Carrier mobilities of organic field‐effect transistors are five times higher when the crystals are grown with the smallest pitches (most twisted), compared to those with the largest pitches, along the fiber elongation direction. A tenfold increase is observed along the perpendicular direction. Simulation of electrical potential based on scanning electron microscopy images and density functional theory suggests that the twisting‐enhanced mobility is mainly controlled by the fiber organization in the film. A greater number of tightly packed twisted fibers separated by numerous smaller gaps permit better charge transport over the film surface compared to fewer big crystallites separated by larger gaps.

     
    more » « less