skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hopper flows of deformable particles
Numerous experimental and computational studies show that continuous hopper flows of granular materials obey the Beverloo equation that relates the volume flow rate Q and the orifice width w : Q ∼ ( w / σ avg − k ) β , where σ avg is the average particle diameter, kσ avg is an offset where Q ∼ 0, the power-law scaling exponent β = d − 1/2, and d is the spatial dimension. Recent studies of hopper flows of deformable particles in different background fluids suggest that the particle stiffness and dissipation mechanism can also strongly affect the power-law scaling exponent β . We carry out computational studies of hopper flows of deformable particles with both kinetic friction and background fluid dissipation in two and three dimensions. We show that the exponent β varies continuously with the ratio of the viscous drag to the kinetic friction coefficient, λ = ζ / μ . β = d − 1/2 in the λ → 0 limit and d − 3/2 in the λ → ∞ limit, with a midpoint λ c that depends on the hopper opening angle θ w . We also characterize the spatial structure of the flows and associate changes in spatial structure of the hopper flows to changes in the exponent β . The offset k increases with particle stiffness until k ∼ k max in the hard-particle limit, where k max ∼ 3.5 is larger for λ → ∞ compared to that for λ → 0. Finally, we show that the simulations of hopper flows of deformable particles in the λ → ∞ limit recapitulate the experimental results for quasi-2D hopper flows of oil droplets in water.  more » « less
Award ID(s):
2002797 2002815
PAR ID:
10400786
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
18
Issue:
42
ISSN:
1744-683X
Page Range / eLocation ID:
8071 to 8086
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Oh, A; Naumann, T; Globerson, A; Saenko, K; Hardt, M; Levine, S (Ed.)
    We consider the problem of learning a single-index target function f∗ : Rd → R under the spiked covariance data: f∗(x) = σ∗   √ 1 1+θ ⟨x,μ⟩   , x ∼ N(0, Id + θμμ⊤), θ ≍ dβ for β ∈ [0, 1), where the link function σ∗ : R → R is a degree-p polynomial with information exponent k (defined as the lowest degree in the Hermite expansion of σ∗), and it depends on the projection of input x onto the spike (signal) direction μ ∈ Rd. In the proportional asymptotic limit where the number of training examples n and the dimensionality d jointly diverge: n, d → ∞, n/d → ψ ∈ (0,∞), we ask the following question: how large should the spike magnitude θ be, in order for (i) kernel methods, (ii) neural networks optimized by gradient descent, to learn f∗? We show that for kernel ridge regression, β ≥ 1 − 1 p is both sufficient and necessary. Whereas for two-layer neural networks trained with gradient descent, β > 1 − 1 k suffices. Our results demonstrate that both kernel methods and neural networks benefit from low-dimensional structures in the data. Further, since k ≤ p by definition, neural networks can adapt to such structures more effectively. 
    more » « less
  2. Abstract Some textured silicone breast implants with high average surface roughness (‘macrotextured’) have been associated with a rare cancer of the immune system, Breast Implant-Associated Anaplastic Large Cell Lymphoma (BIA-ALCL). Silicone elastomer wear debris may lead to chronic inflammation, a key step in the development of this cancer. Here, we model the generation and release of silicone wear debris in the case of a folded implant-implant (‘shell-shell’) sliding interface for three different types of implants, characterized by their surface roughness. The ‘smooth’ implant shell with the lowest average surface roughness tested (R a = 2.7 ± 0.6 μ m) resulted in average friction coefficients of μ avg = 0.46 ± 0.11 across 1,000 mm of sliding distance and generated 1,304 particles with an average particle diameter of D avg = 8.3 ± 13.1 μ m. The ‘microtextured’ implant shell (R a = 32 ± 7.0 μ m) exhibited μ avg = 1.20 ± 0.10 and generated 2,730 particles with D avg = 4.7 ± 9.1 μ m. The ‘macrotextured’ implant shell (R a = 80 ± 10 μ m) exhibited the highest friction coefficients, μ avg = 2.82 ± 0.15 and the greatest number of wear debris particles, 11,699, with an average particle size of D avg = 5.3 ± 3.3 μ m. Our data may provide guidance for the design of silicone breast implants with lower surface roughness, lower friction, and smaller quantities of wear debris. 
    more » « less
  3. Abstract In a collisionless plasma, the energy distribution function of plasma particles can be strongly affected by turbulence. In particular, it can develop a nonthermal power-law tail at high energies. We argue that turbulence with initially relativistically strong magnetic perturbations (magnetization parameterσ≫ 1) quickly evolves into a state with ultrarelativistic plasma temperature but mildly relativistic turbulent fluctuations. We present a phenomenological and numerical study suggesting that in this case, the exponentαin the power-law particle-energy distribution function,f(γ)dγ∝γ−αdγ, depends on magnetic compressibility of turbulence. Our analytic prediction for the scaling exponentαis in good agreement with the numerical results. 
    more » « less
  4. Beck, R.; Thiel, A.; Thoma, U.; Wunderlich, Y. (Ed.)
    The BGO-OD experiment at the ELSA accelerator facility uses an energy tagged bremsstrahlung photon beam to investigate the excitation structure of the nucleon. The setup consists of a highly segmented BGO calorimeter surrounding the target, with a particle tracking magnetic spectrometer at forward angles. BGO-OD is ideal for investigating low momentum transfer processes due to the acceptance and high momentum resolution at forward angles. In particular, this enables the investigation of strangeness photoproduction where t-channel exchange mechanisms play an important role. This also allows access to low momentum exchange kinematics where extended, molecular structure may manifest in reaction mechanisms. First key results at low t indicate a cusp-like structure in K + Σ 0 photoproduction at W = 1900 MeV, line shapes and differential cross sections for K + Λ(1405)→ K + Σ 0 π 0 , and a peak structure in K 0 S Σ 0 photoproduction. The peak in the K 0 S Σ 0 channel appears consistent with meson-baryon generated states, where equivalent models have been used to describe the P C pentaquark candidates in the heavy charmed quark sector. 
    more » « less
  5. null (Ed.)
    Abstract. This work measured $$ \mathrm{d}\sigma/\mathrm{d}\Omega$$ d σ / d Ω for neutral kaon photoproduction reactions from threshold up to a c.m. energy of 1855MeV, focussing specifically on the $$ \gamma p\rightarrow K^0\Sigma^+$$ γ p → K 0 Σ + , $$ \gamma n\rightarrow K^0\Lambda$$ γ n → K 0 Λ , and $$ \gamma n\rightarrow K^0 \Sigma^0$$ γ n → K 0 Σ 0 reactions. Our results for $$ \gamma n\rightarrow K^0 \Sigma^0$$ γ n → K 0 Σ 0 are the first-ever measurements for that reaction. These data will provide insight into the properties of $$ N^{\ast}$$ N * resonances and, in particular, will lead to an improved knowledge about those states that couple only weakly to the $$ \pi N$$ π N channel. Integrated cross sections were extracted by fitting the differential cross sections for each reaction as a series of Legendre polynomials and our results are compared with prior experimental results and theoretical predictions. 
    more » « less