Fair influence maximization in networks has been actively studied to ensure equity in fields like viral marketing and public health. Existing studies often assume an offline setting, meaning that the learner identifies a set of seed nodes with known per-edge activation probabilities. In this paper, we study the problem of fair online influence maximization, i.e., without knowing the ground-truth activation probabilities. The learner in this problem aims to maximally propagate the information among demographic groups, while interactively selecting seed nodes and observing the activation feedback on the fly. We propose Fair Online Influence Maximization (FOIM) framework that can solve the online influence maximization problem under a wide range of fairness notions. Given a fairness notion, FOIM solves the problem with a combinatorial multi-armed bandit algorithm for balancing exploration-exploitation and an offline fair influence maximization oracle for seed nodes selection. FOIM enjoys sublinear regret when the fairness notion satisfies two mild conditions, i.e., monotonicity and bounded smoothness. Our analyses show that common fairness notions, including maximin fairness, diversity fairness, and welfare function, all satisfy the condition, and we prove the corresponding regret upper bounds under these notions. Extensive empirical evaluations on three real-world networks demonstrate the efficacy of our proposed framework.
more »
« less
A Community-Aware Framework for Social Influence Maximization
We consider the problem of Influence Maximization (IM), the task of selecting k seed nodes in a social network such that the expected number of nodes influenced is maximized. We propose a community-aware divide-and-conquer framework that involves (i) learning the inherent community structure of the social network, (ii) generating candidate solutions by solving the influence maximization problem for each community, and (iii ) selecting the final set of seed nodes using a novel progressiv e budgeting scheme. Our experiments on real-world social networks show that the proposed framework outperforms the standard methods in terms of run-time and the heuristic methods in terms of influence. We also study the effect of the community structure on the performance of the proposed framework. Our experiments sho w that the community structures with higher modularity lead the proposed framework to perform better in terms of run-time an d influence.
more »
« less
- Award ID(s):
- 2149588
- PAR ID:
- 10400838
- Date Published:
- Journal Name:
- IEEE transactions on emerging topics in computational intelligence
- ISSN:
- 2471-285X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In many real-world applications such as social network analysis and online advertising/marketing, one of the most important and popular problems is called influence maximization (IM), which finds a set of k seed users that maximize the expected number of influenced user nodes. In practice, however, maximizing the number of influenced nodes may be far from satisfactory for real applications such as opinion promotion and collective buying. In this paper, we explore the importance of stability and triangles in social networks, and formulate a novel problem in the influence spread scenario, named triangular stability maximization , over social networks, and generalize it to a general triangle influence maximization problem, which is proved to be NP-hard. We develop an efficient reverse influence sampling (RIS) based framework for the triangle IM with theoretical guarantees. To enable unbiased estimators, it demands probabilistic sampling of triangles, that is, sampling triangles according to their probabilities. We propose an edge-based triple sampling approach, which is exactly equivalent to probabilistic sampling and avoids costly triangle enumeration and materialization. We also design several pruning and reduction techniques, as well as a cost-model-guided heuristic algorithm. Extensive experiments and a case study over real-world graphs confirm the effectiveness of our proposed algorithms and the superiority of triangular stability maximization and triangle influence maximization.more » « less
-
Influence maximization problem attempts to find a small subset of nodes that makes the expected influence spread maximized, which has been researched intensively before. They all assumed that each user in the seed set we select is activated successfully and then spread the influence. However, in the real scenario, not all users in the seed set are willing to be an influencer. Based on that, we consider each user associated with a probability with which we can activate her as a seed, and we can attempt to activate her many times. In this article, we study the adaptive influence maximization with multiple activations (Adaptive-IMMA) problem, where we select a node in each iteration, observe whether she accepts to be a seed, if yes, wait to observe the influence diffusion process; if no, we can attempt to activate her again with a higher cost or select another node as a seed. We model the multiple activations mathematically and define it on the domain of integer lattice. We propose a new concept, adaptive dr-submodularity, and show our Adaptive-IMMA is the problem that maximizing an adaptive monotone and dr-submodular function under the expected knapsack constraint. Adaptive dr-submodular maximization problem is never covered by any existing studies. Thus, we summarize its properties and study its approximability comprehensively, which is a non-trivial generalization of existing analysis about adaptive submodularity. Besides, to overcome the difficulty to estimate the expected influence spread, we combine our adaptive greedy policy with sampling techniques without losing the approximation ratio but reducing the time complexity. Finally, we conduct experiments on several real datasets to evaluate the effectiveness and efficiency of our proposed policies.more » « less
-
In many real-world applications such as social network analysis and online marketing/advertising, community detection is a fundamental task to identify communities (subgraphs) in social networks with high structural cohesiveness. While previous works focus on detecting communities alone, they do not consider the collective influences of users in these communities on other user nodes in social networks. Inspired by this, in this paper, we investigate the influence propagation from some seed communities and their influential effects that result in the influenced communities. We propose a novel problem, named Top-L most Influential Community DEtection (TopL-ICDE) over social networks, which aims to retrieve top-L seed communities with the highest influences, having high structural cohesiveness, and containing user-specified query keywords. To efficiently tackle the TopL-ICDE problem, we design effective pruning strategies to filter out false alarms of seed communities and propose an effective index mechanism to facilitate efficient Top-L community retrieval. We develop an efficient TopL-ICDE answering algorithm by traversing the index and applying our proposed pruning strategies. We also formulate and tackle a variant of TopL-ICDE, named diversified top-L most influential community detection (DTopL-ICDE), which returns a set of L diversified communities with the highest diversity score (i.e., collaborative influences by L communities). We prove that DTopL-ICDE is NP-hard, and propose an efficient greedy algorithm with our designed diversity score pruning. Through extensive experiments, we verify the efficiency and effectiveness of our proposed TopL-ICDE and DTopL-ICDE approaches over real/synthetic social networks under various parameter settings.more » « less
-
Influence maximization (IM) is the problem of identifying a limited number of initial influential users within a social network to maximize the number of influenced users. However, previous research has mostly focused on individual information propagation, neglecting the simultaneous and interactive dissemination of multiple information items. In reality, when users encounter a piece of information, such as a smartphone product, they often associate it with related products in their minds, such as earphones or computers from the same brand. Additionally, information platforms frequently recommend related content to users, amplifying this cascading effect and leading to multiplex influence diffusion.This paper first formulates the Multiplex Influence Maximization (Multi-IM) problem using multiplex diffusion models with an information association mechanism. In this problem, the seed set is a combination of influential users and information. To effectively manage the combinatorial complexity, we propose Graph Bayesian Optimization for Multi-IM (GBIM). The multiplex diffusion process is thoroughly investigated using a highly effective global kernelized attention message-passing module. This module, in conjunction with Bayesian linear regression (BLR), produces a scalable surrogate model. A data acquisition module incorporating the exploration-exploitation trade-off is developed to optimize the seed set further.Extensive experiments on synthetic and real-world datasets have proven our proposed framework effective. The code is available at https://github.com/zirui-yuan/GBIM.more » « less
An official website of the United States government

