skip to main content


Title: Pressure-driven flow of the viscoelastic Oldroyd-B fluid in narrow non-uniform geometries: analytical results and comparison with simulations
We analyse the pressure-driven flow of the Oldroyd-B fluid in slowly varying arbitrarily shaped, narrow channels and present a theoretical framework for calculating the relationship between the flow rate $q$ and pressure drop $\Delta p$ . We first identify the characteristic scales and dimensionless parameters governing the flow in the lubrication limit. Employing a perturbation expansion in powers of the Deborah number ( $De$ ), we provide analytical expressions for the velocity, stress and the $q$ – $\Delta p$ relation in the weakly viscoelastic limit up to $O(De^2)$ . Furthermore, we exploit the reciprocal theorem derived by Boyko $\&$ Stone ( Phys. Rev. Fluids , vol. 6, 2021, L081301) to obtain the $q$ – $\Delta p$ relation at the next order, $O(De^3)$ , using only the velocity and stress fields at the previous orders. We validate our analytical results with two-dimensional numerical simulations in the case of a hyperbolic, symmetric contracting channel and find excellent agreement. While the velocity remains approximately Newtonian in the weakly viscoelastic limit (i.e. the theorem of Tanner and Pipkin), we reveal that the pressure drop strongly depends on the viscoelastic effects and decreases with $De$ . We elucidate the relative importance of different terms in the momentum equation contributing to the pressure drop along the symmetry line and identify that a pressure drop reduction for narrow contracting geometries is primarily due to gradients in the viscoelastic shear stresses. We further show that, although for narrow geometries the viscoelastic axial stresses are negligible along the symmetry line, they are comparable or larger than shear stresses in the rest of the domain.  more » « less
Award ID(s):
2011750
NSF-PAR ID:
10324983
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
936
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Inspired by the recent realization of a two-dimensional (2-D) chiral fluid as an active monolayer droplet moving atop a 3-D Stokesian fluid, we formulate mathematically its free-boundary dynamics. The surface droplet is described as a general 2-D linear, incompressible and isotropic fluid, having a viscous shear stress, an active chiral driving stress and a Hall stress allowed by the lack of time-reversal symmetry. The droplet interacts with itself through its driven internal mechanics and by driving flows in the underlying 3-D Stokes phase. We pose the dynamics as the solution to a singular integral–differential equation, over the droplet surface, using the mapping from surface stress to surface velocity for the 3-D Stokes equations. Specializing to the case of axisymmetric droplets, exact representations for the chiral surface flow are given in terms of solutions to a singular integral equation, solved using both analytical and numerical techniques. For a disc-shaped monolayer, we additionally employ a semi-analytical solution that hinges on an orthogonal basis of Bessel functions and allows for efficient computation of the monolayer velocity field, which ranges from a nearly solid-body rotation to a unidirectional edge current, depending on the subphase depth and the Saffman–Delbrück length. Except in the near-wall limit, these solutions have divergent surface shear stresses at droplet boundaries, a signature of systems with codimension-one domains embedded in a 3-D medium. We further investigate the effect of a Hall viscosity, which couples radial and transverse surface velocity components, on the dynamics of a closing cavity. Hall stresses are seen to drive inward radial motion, even in the absence of edge tension. 
    more » « less
  2. SUMMARY

    Protracted episodes of 0.5–7 Hz pre-eruptive volcanic tremor (PVT) are common at active stratovolcanoes. Reliable links to processes related to magma movement consequently enable a potential to use properties of PVT as diagnostic eruptive precursors. A challenging feature of PVT is that generic spectral and amplitude properties of the signal evolve similarly, independent of widely varying volcano structures and conduit geometries on which most physical models rely. The ‘magma wagging’ model introduced in Jellinek & Bercovici (2011) and extended by Bercovici et al. (2013), Liao et al. and Liao & Bercovici (2018) makes progress because it depends on magma dynamics that are only weakly sensitive to volcano architecture: The flow of gas through a permeable foamy annulus of gas bubbles excites, modulates and maintains a wagging oscillation of a central magma column rising in an erupting conduit. ‘Magma wagging’ and resulting PVT are driven through an energy transfer from a ‘Bernoulli mode’ related to azimuthal variations in annular gas flow speeds. Consistent with observations, spectral and amplitude properties of PVT are predicted to evolve before an eruption as the width of the annulus decreases with increased gas fluxes. To confirm this critical Bernoulli-to-wagging energy transfer we use extensive experiments and restricted numerical simulations on wagging oscillations excited on analogue viscoelastic columns by annular air flows. We also explore sensitivities of the spatial and temporal characters of wagging to asymmetric annular air flows that are intractable in the existing magma wagging model and expected to occur in nature with spatial variations in annulus permeability. From high-resolution time-series of linear and orbital displacements of analogue column tops and time-series of axial deflections and accelerations of the column centre line, we characterize the excitation, evolution, and steady-state oscillations in unprecedented detail over a broad range of conditions. We show that the Bernoulli mode corresponds to the timescale for the buildup of axial elastic bending stresses in response to pressure variations related to air flows over the heights of columns. We identify three distinct wagging modes: (i) rotational (cf. Liao et al. 2018); (ii) mixed-mode and (iii) chaotic. Rotational modes are favoured for symmetric, high intensity forcing and a maximal delivery of mechanical energy to the fundamental magma wagging mode. Mixed-mode oscillations regimes are favoured for a symmetric, intermediate intensity forcing. Chaotic modes, involving the least efficient delivery of energy to the fundamental mode, occur for asymmetric forcing and where the intensity of imposed airflow is low. Numerical simulations also show that where forcing frequencies are comparable to a natural mode of free oscillation, power delivered by peripheral air flows is concentrated at the lowest frequency fundamental mode generally and spread among higher frequency natural modes where air pressure and column elastic forces are comparable. Our combined experimental and numerical results make qualitative predictions for the evolution of the character of volcanic tremor and its expression in seismic or infrasound arrays during natural events that is testable in field-based studies of PVT and syn-eruptive volcanic tremor.

     
    more » « less
  3. Non-Newtonian fluids are characterized by complex rheological behaviour that affects the hydrodynamic features, such as the flow rate–pressure drop relation. While flow rate–pressure drop measurements of such fluids are common in the literature, a comparison of experimental data with theory is rare, even for shear-thinning fluids at low Reynolds number, presumably due to the lack of analytical expressions for the flow rate–pressure drop relation covering the entire range of pressures and flow rates. Such a comparison, however, is of fundamental importance as it may provide insight into the adequacy of the constitutive model that was used and the values of the rheological parameters. In this work, we present a theoretical approach to calculating the flow rate–pressure drop relation of shear-thinning fluids in long, narrow channels that can be used for comparison with experimental measurements. We utilize the Carreau constitutive model and provide a semi-analytical expression for the flow rate–pressure drop relation. In particular, we derive three asymptotic solutions for small, intermediate and large values of the dimensionless pressures or flow rates, which agree with distinct limits previously known and allow us to approximate analytically the entire flow rate–pressure drop curve. We compare our semi-analytical and asymptotic results with the experimental measurements of Pipe et al. ( Rheol. Acta , vol. 47, 2008, pp. 621–642) and find excellent agreement. Our results rationalize the change in the slope of the flow rate–pressure drop data, when reported in log–log coordinates, at high flow rates, which cannot be explained using a simple power-law model. 
    more » « less
  4. null (Ed.)
    Abstract This study investigates the dynamics of velocity shear and Reynolds stress in the ocean surface boundary layer for idealized misaligned wind and wave fields using a large-eddy simulation (LES) model based on the Craik–Leibovich equations, which captures Langmuir turbulence (LT). To focus on the role of LT, the LES experiments omit the Coriolis force, which obscures a stress–current-relation analysis. Furthermore, a vertically uniform body force is imposed so that the volume-averaged Eulerian flow does not accelerate but is steady. All simulations are first spun-up without wind-wave misalignment to reach a fully developed stationary turbulent state. Then, a crosswind Stokes drift profile is abruptly imposed, which drives crosswind stresses and associated crosswind currents without generating volume-averaged crosswind currents. The flow evolves to a new stationary state, in which the crosswind Reynolds stress vanishes while the crosswind Eulerian shear and Stokes drift shear are still present, yielding a misalignment between Reynolds stress and Lagrangian shear (sum of Eulerian current and Stokes drift). A Reynolds stress budgets analysis reveals a balance between stress production and velocity–pressure gradient terms (VPG) that encloses crosswind Eulerian shear, demonstrating a complex relation between shear and stress. In addition, the misalignment between Reynolds stress and Eulerian shear generates a horizontal turbulent momentum flux (due to correlations of along-wind and crosswind turbulent velocities) that can be important in producing Reynolds stress (due to correlations of horizontal and vertical turbulent velocities). Thus, details of the Reynolds stress production by Eulerian and Stokes drift shear may be critical for driving upper-ocean currents and for accurate turbulence parameterizations in misaligned wind-wave conditions. 
    more » « less
  5. The immersed boundary method is a widely used mixed Eulerian/Lagrangian framework for simulating the motion of elastic structures immersed in viscous fluids. In this work, we consider a poroelastic immersed boundary method in which a fluid permeates a porous, elastic structure of negligible volume fraction, and extend this method to include stress relaxation of the material. The porous viscoelastic method presented here is validated for a prescribed oscillatory shear and for an expansion driven by the motion at the boundary of a circular material by comparing numerical solutions to an analytical solution of the Maxwell model for viscoelasticity. Finally, an application of the modelling framework to cell biology is provided: passage of a cell through a microfluidic channel. We demonstrate that the rheology of the cell cytoplasm is important for capturing the transit time through a narrow channel in the presence of a pressure drop in the extracellular fluid. 
    more » « less