Spin‐state transitions are an important research topic in complex oxides with the diverse magnetic states involved. In particular, the low‐spin to high‐spin transition in LaCoO3thin films has drawn a wide range of attention due to the emergent ferromagnetic state. Although various mechanisms (e.g., structural distortion, oxygen‐vacancy formation, spin‐state ordering) have been proposed, an understanding of what really underlies the emergent ferromagnetism remains elusive. Here, the ferromagnetism in LaCoO3thin films is systematically modulated by varying the oxygen pressure during thin‐film growth. Although the samples show dramatic different magnetization, their cobalt valence state and perovskite crystalline structure remain almost unchanged, ruling out the scenarios of both oxygen‐vacancy and spin‐ordering. This work provides compelling evidence that the tetragonal distortion due to the tensile strain significantly modifies the orbital occupancy, leading to a low‐spin to high‐spin transition with emergent ferromagnetism, while samples grown at reduced pressure demonstrate a pronounced lattice expansion due to cation‐off‐stoichiometry, which suppresses the tetragonal distortion and the consequent magnetization. This result not only provides important insight for the understanding of exotic ferromagnetism in LaCoO3thin films, but also identifies a promising strategy to design electronic states in complex oxides through cation‐stoichiometry engineering.
more » « less- Award ID(s):
- 2102895
- PAR ID:
- 10400997
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Electronic Materials
- Volume:
- 9
- Issue:
- 5
- ISSN:
- 2199-160X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Emergent and robust ferromagnetic-insulating state in highly strained ferroelastic LaCoO3 thin filmsAbstract Transition metal oxides are promising candidates for the next generation of spintronic devices due to their fascinating properties that can be effectively engineered by strain, defects, and microstructure. An excellent example can be found in ferroelastic LaCoO 3 with paramagnetism in bulk. In contrast, unexpected ferromagnetism is observed in tensile-strained LaCoO 3 films, however, its origin remains controversial. Here we simultaneously reveal the formation of ordered oxygen vacancies and previously unreported long-range suppression of CoO 6 octahedral rotations throughout LaCoO 3 films. Supported by density functional theory calculations, we find that the strong modification of Co 3 d -O 2 p hybridization associated with the increase of both Co-O-Co bond angle and Co-O bond length weakens the crystal-field splitting and facilitates an ordered high-spin state of Co ions, inducing an emergent ferromagnetic-insulating state. Our work provides unique insights into underlying mechanisms driving the ferromagnetic-insulating state in tensile-strained ferroelastic LaCoO 3 films while suggesting potential applications toward low-power spintronic devices.more » « less
-
Abstract Ternary metal‐oxide material systems commonly crystallize in the perovskite crystal structure, which is utilized in numerous electronic applications. In contrast to oxides, there are no known nitride perovskites, likely due to the competition with oxidation, which makes the formation of pure nitride materials difficult and synthesis of oxynitride materials more common. While deposition of oxynitride perovskite thin films is important for many electronic applications, it is difficult to control oxygen and nitrogen stoichiometry. Lanthanum tungsten oxynitride (LaWN3−
δ Oδ ) thin films with varying La:W ratio are synthesized by combinatorial sputtering and characterized for their chemical composition, crystal structure, and microstructure. A three‐step synthesis method, which involves co‐sputtering, capping layer deposition, and rapid thermal annealing, is established for producing crystalline thin films while minimizing the oxygen content. Elemental depth profiling results show that the cation‐stoichiometric films contain approximately one oxygen for every five nitrogen (δ = 0.5). Synchrotron‐based diffraction indicates a tetragonal perovskite crystal structure. These results are discussed in terms of the perovskite tolerance factors, octahedral tilting, and bond valence. Overall, this synthesis and characterization is expected to pave the way toward future thin film property measurements of lanthanum tungsten oxynitrides and eventual synthesis of oxygen‐free nitride perovskites. -
Abstract La0.7Sr0.3MnO3, a strong semi-metallic ferromagnet having robust spin polarization and magnetic transition temperature (
T C) well above 300 K, has attracted significant attention as a possible candidate for a wide range of memory, spintronic, and multifunctional devices. Since varying the oxygen partial pressure during growth is likely to change the structural and other physical functionalities of La0.7Sr0.3MnO3(LSMO) films, here we report detailed investigations on structure, along with magnetic behavior of LSMO films with same thickness (~30 nm) but synthesized at various oxygen partial pressures: 10, 30, 50, 100, 150, 200 and 250 mTorr. The observation of only (00 l ) reflections without any secondary peaks in the XRD patterns confirms the high-quality synthesis of the above-mentioned films. Surface morphology of the films reveals that these films are very smooth with low roughness, the thin films synthesized at 150 mTorr having the lowest average roughness. The increasing of magneticT Cand sharpness of the magnetic phase transitions with increasing oxygen growth pressure suggests that by decreasing the oxygen growth pressure leads to oxygen deficiencies in grown films which induce oxygen inhomogeneity. Thin films grown at 150 mTorr exhibits the highest magnetization withT C = 340 K as these thin films possess the lowest roughness and might exhibit lowest oxygen vacancies and defects. Interpretation and significance of these results in the 30 nm LSMO thin films prepared at different oxygen growth pressures are also presented, along with the existence and growth pressure dependence of negative remanent magnetization (NRM) of the above-mentioned thin films. -
Abstract We have investigated the collective electronic and magnetic orderings of a series of La1−
x Srx MnO3thin films grown epitaxially strained to (001) oriented strontium titanate substrates as a function of doping,x , for 0 ≤x ≤ 0.4. We find that the ground states of these crystalline thin films are, in general, consistent with that observed in bulk crystals and thin film samples synthesized under a multitude of techniques. Our systematic study, however, reveal subtle features in the temperature dependent electronic transport and magnetization measurements, which presumably arise due to Jahn-Teller type distortions in the lattice for particular doping levels. For the parent compound LaMnO3(x = 0), we report evidence of a strain-induced ferromagnetic ordering in contrast to the antiferromagnetic ground state found in bulk crystals. -
Abstract Oxygen coordination and vacancy ordering play an important role in dictating the functionality of complex oxides. In this work, an unconventional layering of oxygen ions in a mixed conductor SrCo1‐xFexO3‐δ(SCFO) thin film grown epitaxially on SrTiO3(STO) is reported. Scanning transmission electron microscopy (STEM) reveals alternating layers of oxygen deficiency along the growth direction, with the oxygen‐rich layer correlated with the neighboring Co,Fe‐site intensity, and contraction of the Sr–Sr distance. Density functional theory (DFT) calculations and STEM image simulations support the emergence of periodic (Co,Fe)O6and (Co,Fe)O4/(Co,Fe)O5layers, an ordering that is also sensitive to the Co:Fe ratio.