skip to main content


Title: Theory of Mind Assessment with Human-Human and Human-Robot Interactions
Human-robot interaction has played an increasingly significant role in more recent research involving the Theory of Mind (ToM). As the use of robot facilitators increases, questions arise regarding the implications of their involvement in a research setting. This work addresses the effects of a humanoid robot facilitator in a ToM assessment. This paper analyzes subjects’ performances on tasks meant to test ToM as those tasks are delivered by human or robot facilitators. Various modalities of data were collected: performance on ToM tasks, subjects’ perceptions of the robot, results from a ToM survey, and response duration. This paper highlights the effects of human-robot interactions in ToM assessments, which ultimately leads to a discussion on the effectiveness of using robot facilitators in future human-subject research.  more » « less
Award ID(s):
1851591
PAR ID:
10401579
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Human-Computer Interaction. Technological Innovation. HCII 2022. Lecture Notes in Computer Science
Volume:
13303
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we analyze and report on observable trends in human-human dyads performing collaborative manipulation (co-manipulation) tasks with an extended object (object with significant length). We present a detailed analysis relating trends in interaction forces and torques with other metrics and propose that these trends could provide a way of improving communication and efficiency for human-robot dyads. We find that the motion of the co-manipulated object has a measurable oscillatory component. We confirm that haptic feedback alone represents a sufficient communication channel for co-manipulation tasks, however we find that the loss of visual and auditory channels has a significant effect on interaction torque and velocity. The main objective of this paper is to lay the essential groundwork in defining principles of co-manipulation between human dyads. We propose that these principles could enable effective and intuitive human-robot collaborative manipulation in future co-manipulation research. 
    more » « less
  2. null (Ed.)
    In this paper, we propose a novel online algorithm for motion similarity measurements during human-robot interaction (HRI). Specifically, we formulate a Segment-based Online Dynamic Time Warping (SODTW) algorithm that can be used for understanding of repeated and cyclic human motions, in the context of rehabilitation or social interaction. The algorithm can estimate both the human-robot motion similarity and the time delay to initiate motion and combine these values as a metric to adaptively select appropriate robot imitation repertoires. We validated the algorithm offline by post-processing experimental data collected from a cohort of 55 subjects during imitation episodes with our social robot Zeno. Furthermore, we implemented the algorithm online on Zeno and collected further experimental results with 13 human subjects. These results show that the algorithm can reveal important features of human movement including the quality of motion and human reaction time to robot stimuli. Moreover, the robot can adapt to appropriate human motion speeds based on similarity measurements calculated using this algorithm, enabling future adaptive rehabilitation interventions for conditions such as Autism Spectrum Disorders (ASD). 
    more » « less
  3. Human teams are able to easily perform collaborative manipulation tasks. However, simultaneously manipulating a large extended object for a robot and human is a difficult task due to the inherent ambiguity in the desired motion. Our approach in this paper is to leverage data from human-human dyad experiments to determine motion intent for a physical human-robot co-manipulation task. We do this by showing that the human-human dyad data exhibits distinct torque triggers for a lateral movement. As an alternative intent estimation method, we also develop a deep neural network based on motion data from human-human trials to predict future trajectories based on past object motion. We then show how force and motion data can be used to determine robot control in a human-robot dyad. Finally, we compare human-human dyad performance to the performance of two controllers that we developed for human-robot co-manipulation. We evaluate these controllers in three-degree-of-freedom planar motion where determining if the task involves rotation or translation is ambiguous.

     
    more » « less
  4. The emergence and recent development of collaborative robots have introduced a safer and more efficient human–robot collaboration (HRC) manufacturing environment. Since the release of COBOTs, a great amount of research efforts have been focused on improving robot working efficiency, user safety, human intention detection, etc., while one significant factor—human comfort—has been frequently ignored. The comfort factor is critical to COBOT users due to its great impact on user acceptance. In previous studies, there is a lack of a mathematical-model-based approach to quantitatively describe and predict human comfort in HRC scenarios. Also, few studies have discussed the cases when multiple comfort factors take effect simultaneously. In this study, a multi-linear-regression-based general human comfort prediction model is proposed under human–robot collaboration scenarios, which is able to accurately predict the comfort levels of humans in multi-factor situations. The proposed method in this paper tackled these two gaps at the same time and also demonstrated the effectiveness of the approach with its high prediction accuracy. The overall average accuracy among all participants is 81.33%, while the overall maximum value is 88.94%, and the overall minimum value is 72.53%. The model uses subjective comfort rating feedback from human subjects as training and testing data. Experiments have been implemented, and the final results proved the effectiveness of the proposed approach in identifying human comfort levels in HRC.

     
    more » « less
  5. This study evaluated how a robot demonstrating a Theory of Mind (ToM) influenced human perception of social intelligence and animacy in a human-robot interaction. Data was gathered through an online survey where participants watched a video depicting a NAO robot either failing or passing the Sally-Anne false-belief task. Participants (N = 60) were randomly assigned to either the Pass or Fail condition. A Perceived Social Intelligence Survey and the Perceived Intelligence and Animacy subsections of the Godspeed Questionnaire were used as measures. The Godspeed was given before viewing the task to measure participant expectations, and again after to test changes in opinion. Our findings show that robots demonstrating ToM significantly increase perceived social intelligence, while robots demonstrating ToM deficiencies are perceived as less socially intelligent. 
    more » « less