skip to main content


Title: Effects of adventitious impurity adsorption on oxygen interstitial injection rates from submerged TiO2(110) and ZnO(0001) surfaces

Low bond coordination of surface atoms facilitates the injection of oxygen interstitial atoms into the bulk near room temperature from the clean surfaces of semiconducting metal oxides when exposed to liquid water, opening new prospects for postsynthesis defect engineering and isotopic fractionation. The injection rate and penetration depth vary considerably under identical experimental conditions, however, with the adsorption of adventitious carbon suggested as the cause. For water-submerged rutile TiO2(110) and wurtzite ZnO(0001), this work bolsters and refines that hypothesis by combining the isotopic self-diffusion measurements of oxygen with characterization by x-ray photoelectron spectroscopy and atomic force microscopy. Adventitious carbon likely diminishes injection rates by poisoning small concentrations of exceptionally active surface sites that either inject O or dissociate adsorbed OH to injectable O. These effects propagate into the penetration depth via the progressive saturation of Oi traps near the surface, which occurs less extensively as the injected flux decreases.

 
more » « less
Award ID(s):
1709327
NSF-PAR ID:
10402569
Author(s) / Creator(s):
;
Publisher / Repository:
American Vacuum Society
Date Published:
Journal Name:
Journal of Vacuum Science & Technology A
Volume:
41
Issue:
3
ISSN:
0734-2101
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present full water depth sections of size‐fractionated (1–51 μm; >51 μm) concentrations of suspended particulate matter and major particle phase composition (particulate organic matter [POM], including its carbon isotopic composition [POC‐δ13C] and C:N ratio, calcium carbonate [CaCO3], opal, lithogenic particles, and iron and manganese [oxyhydr]oxides) from the U.S. GEOTRACES Arctic Cruise (GN01) in the western Arctic in 2015. Whereas biogenic particles (POM and opal) dominate the upper 1,000 m, lithogenic particles are the most abundant particle type at depth. Minor phases such as manganese (Mn) oxides are higher in GN01 than in any other U.S. GEOTRACES cruises so far. Extremely depleted POC‐δ13C, as low as ~ −32‰, is ubiquitous at the surface of the western Arctic Ocean as a result of different growth rates of phytoplankton. Moderate penetration of depleted POC‐δ13C to depth indicates active sinking of large particles in the central basin. Lateral transport from the Chukchi shelf is also of significance in the western Arctic, as is evident from increases in biogenic silica to POC ratios and Mn oxide concentrations in the halocline, as well as lithogenic element contents in the deep waters. Our study supports previous suggestions of the near absence of CaCO3in the Arctic Basin. This study presents the first data set of concentration and composition of suspended particles in the western Arctic Ocean and sheds new light on the vertical and lateral processes that govern particle distribution in this enclosed ocean basin.

     
    more » « less
  2. Carbonate minerals contain stable isotopes of carbon and oxygen with different masses whose abundances and bond arrangement are governed by thermodynamics. The clumped isotopic value Δiis a measure of the temperature-dependent preference of heavy C and O isotopes to clump, or bond with or near each other, rather than with light isotopes in the carbonate phase. Carbonate clumped isotope thermometry uses Δivalues measured by mass spectrometry (Δ47, Δ48) or laser spectroscopy (Δ638) to reconstruct mineral growth temperature in surface and subsurface environments independent of parent water isotopic composition. Two decades of analytical and theoretical development have produced a mature temperature proxy that can estimate carbonate formation temperatures from 0.5 to 1,100°C, with up to 1–2°C external precision (2 standard error of the mean). Alteration of primary environmental temperatures by fluid-mediated and solid-state reactions and/or Δivalues that reflect nonequilibrium isotopic fractionations reveal diagenetic history and/or mineralization processes. Carbonate clumped isotope thermometry has contributed significantly to geological and biological sciences, and it is poised to advance understanding of Earth's climate system, crustal processes, and growth environments of carbonate minerals. ▪ Clumped heavy isotopes in carbonate minerals record robust temperatures and fluid compositions of ancient Earth surface and subsurface environments. ▪ Mature analytical methods enable carbonate clumped Δ47, Δ48, and Δ638measurements to address diverse questions in geological and biological sciences. ▪ These methods are poised to advance marine and terrestrial paleoenvironment and paleoclimate, tectonics, deformation, hydrothermal, and mineralization studies.

     
    more » « less
  3. none. (Ed.)
    The concentration and isotopic composition (δC; C/N) of sedimentary organic matter (SOM) in near-shore bays and offshore shelves and basins is impacted by organic matter source (e.g., marine algae, terrestrial plants, and agricultural and sewage runoff) and natural and anthropogenic processes such as pollution, terrestrial runoff, and climate change, which can expand oxygen minimum zones, leading to decreased bottom-water dissolved oxygen (DO) and enhanced organic matter preservation. The factors that affect the sources and concentrations of SOM have not been extensively investigatedin the California margin. The objective of this study was to determine how the SOM concentrations andstable isotopes (δC; C/N) vary between shallow urban bays, offshore shelves, and deep basins and with other factors (water depth, DO and grain size). On cruises in 2018, surface sediments were collected using multicores and van-veen grabs. Samples were collected from shelves (10-14km offshore; 100-300m) and basins (90-130km offshore; 618-997m)and for comparison, urban bays in San Diego. The dissolved oxygen (DO) concentrations of seafloor-water preserved in the multicores were measured with a hand-held DO meter. In the lab, SOM concentrations were determined by Loss on Ignition (5 hours, 550°C) and grain-size distributions were determined by scanning on a CILAS 1190 particle size analyzer. Select sediments were dissolved in HCl and filtered to remove inorganic carbonates and the δC and C/N measured at UC Davis. All sediments were organic rich (2-21%) with mean grain sizes of fi ne sand or silt with variable clay (3-12%). In general, the sands were lower in organic matter (< 5%) compared to silty samples withvariable concentrations (2-22%). The greatest organic matter was found in the deeper hypoxic basins where DO was less than 1.5 mg/L. The δC & C/N were consistent with mixed terrestrial and marine organic sources and there was not a difference in mean values between the bays, shelves and basins.However, the values were highly variable for the urban bay and shelf sediments suggesting heterogenous input. Organic matter in coastal sediments are an important component of the global carbon cycle and abetter understanding of controlling factors is important in the face of climate change and increased anthropogenic impacts. 
    more » « less
  4. Abstract

    Net community production (NCP), an analog of carbon export out of the surface ocean, is often estimated using budgets of dissolved oxygen. Accurate estimates of oxygen‐based NCP, especially in dynamic coastal regions, require constraints on vertical transport of water with O2out of equilibrium with the atmosphere, nonsteady state change in the oxygen inventory, heating/cooling‐driven O2disequilibrium, and the rate of bubble injection from wave activity. The latter two are typically evaluated by using discrete measurements of the O2/Ar ratio in lieu of O2only. Because sophisticated sampling and measurement techniques are required to make these measurements, they are often limited in spatiotemporal resolution. However, high‐resolution estimates of NCP may be useful in determining small‐scale patchiness in export. In this study, we calculated high‐resolution NCP in coastal Southern California using dissolved oxygen measurements made by an autonomous buoyancy‐driven Slocum glider and an empirical relationship derived using discrete measurements of O2/Ar in the surface mixed layer to remove the influence of bubble injection, which accounted for approximately one fourth of the O2supersaturation observed. Using estimates of vertical transport from wind speed‐based parameterizations, previously validated using a7Be budget, we were able to correct for the physical biases to the signal, which are known to significantly influence dissolved oxygen budgets in this region. Our results agree well with previously published NCP estimates for the study area but also reveal higher‐frequency variability that discrete sampling was unable to resolve, suggesting that this approach may be useful in other regions with well‐constrained vertical transport rates.

     
    more » « less
  5. Teagle, Damon A (Ed.)
    The Cedars ultramafic block hosts alkaline springs (pH > 11) in which calcium carbonate forms upon uptake of atmospheric CO2 and at times via mixing with surface water. These processes lead to distinct carbonate morphologies with ‘‘floes” forming at the atmosphere-water interface, ‘‘snow” of fine particles accumulating at the bottom of pools and terraced constructions of travertine. Floe material is mainly composed of aragonite needles despite CaCO3 precipitation occurring in waters with low Mg/Ca (<0.01). Precipitation of aragonite is likely promoted by the high pH (11.5–12.0) of pool waters, in agreement with published experiments illustrating the effect of pH on calcium carbonate polymorph selection. The calcium carbonates exhibit an extreme range and approximately 1:1 covariation in d13C (9 to 28‰ VPDB) and d18O (0 to 20‰ VPDB) that is characteristic of travertine formed in high pH waters. The large isotopic fractionations have previously been attributed to kinetic isotope effects accompanying CO2 hydroxylation but the controls on the d13C-d18O endmembers and slope have not been fully resolved, limiting the use of travertine as a paleoenvironmental archive. The limited areal extent of the springs (0.5 km2) and the limited range of water sources and temperatures, combined with our sampling strategy, allow us to place tight constraints on the processes involved in generating the systematic C and O isotope variations. We develop an isotopic reaction–diffusion model and an isotopic box model for a CO2-fed solution that tracks the isotopic composition of each dissolved inorganic carbon (DIC) species and CaCO3. The box model includes four sources or sinks of DIC (atmospheric CO2, high pH spring water, fresh creek water, and CaCO3 precipitation). Model parameters are informed by new floe D44Ca data (0.75 ± 0.07‰), direct mineral growth rate measurements (4.8 to 8  107 mol/m2/s) and by previously published elemental and isotopic data of local water and DIC sources. Model results suggest two processes control the extremes of the array: (1) the isotopically light end member is controlled by the isotopic composition of atmospheric CO2 and the kinetic isotope fractionation factor (KFF (‰) = (a  1)  1000) accompanying CO2 hydroxylation, estimated here to be 17.1 ± 0.8‰ (vs. CO2(aq)) for carbon and 7.1 ± 1.1‰ (vs. ‘CO2(aq)+H2O’) for oxygen at 17.4 ± 1.0 C. Combining our results with revised CO2 hydroxylation KFF values based on previous work suggests consistent KFF values of 17.0 ± 0.3‰ (vs. CO2(aq)) for carbon and 6.8 ± 0.8‰ for oxygen (vs. ‘CO2(aq)+H2O’) over the 17–28 C temperature range. (2) The isotopically heavy endmember of calcium carbonates at The Cedars reflects the composition of isotopically equilibrated DIC from creek or surface water (mostly HCO- 3, pH = 7.8–8.7) that occasionally mixes with the high-pH spring water. The bulk carbonate d13C and d18O values of modern and ancient travertines therefore reflect the proportion of calcium carbonate formed by processes (1) and (2), with process (2) dominating the carbonate precipitation budget at The Cedars. These results show that recent advances in understanding kinetic isotope effects allow us to model complicated but common natural processes, and suggest ancient travertine may be used to retrieve past meteoric water d18O and atmospheric d13C values. There is evidence that older travertine at The Cedars recorded atmospheric d13C that predates large-scale combustion of fossil fuels. 
    more » « less