skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Anisotropic Excitons Reveal Local Spin Chain Directions in a van der Waals Antiferromagnet
Abstract A long‐standing pursuit in materials science is to identify suitable magnetic semiconductors for integrated information storage, processing, and transfer. Van der Waals magnets have brought forth new material candidates for this purpose. Recently, sharp exciton resonances in antiferromagnet NiPS3have been reported to correlate with magnetic order, that is, the exciton photoluminescence intensity diminishes above the Néel temperature. Here, it is found that the polarization of maximal exciton emission rotates locally, revealing three possible spin chain directions. This discovery establishes a new understanding of the antiferromagnet order hidden in previous neutron scattering and optical experiments. Furthermore, defect‐bound states are suggested as an alternative exciton formation mechanism that has yet to be explored in NiPS3. The supporting evidence includes chemical analysis, excitation power, and thickness dependent photoluminescence and first‐principles calculations. This mechanism for exciton formation is also consistent with the presence of strong phonon side bands. This study shows that anisotropic exciton photoluminescence can be used to read out local spin chain directions in antiferromagnets and realize multi‐functional devices via spin‐photon transduction.  more » « less
Award ID(s):
1720595 2130552 2019130 2118806 2118779
PAR ID:
10403071
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
35
Issue:
19
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Magnetic van der Waals (vdW) materials have opened new frontiers for realizing novel many-body phenomena. Recently NiPS3has received intense interest since it hosts an excitonic quasiparticle whose properties appear to be intimately linked to the magnetic state of the lattice. Despite extensive studies, the electronic character, mobility, and magnetic interactions of the exciton remain unresolved. Here we address these issues by measuring NiPS3with ultra-high energy resolution resonant inelastic x-ray scattering (RIXS). We find that Hund’s exchange interactions are primarily responsible for the energy of formation of the exciton. Measuring the dispersion of the Hund’s exciton reveals that it propagates in a way that is analogous to a double-magnon. We trace this unique behavior to fundamental similarities between the NiPS3exciton hopping and spin exchange processes, underlining the unique magnetic characteristics of this novel quasiparticle. 
    more » « less
  2. Abstract Exciton dynamics can be strongly affected by lattice vibrations through electron-phonon coupling. This is rarely explored in two-dimensional magnetic semiconductors. Focusing on bilayer CrI3, we first show the presence of strong electron-phonon coupling through temperature-dependent photoluminescence and absorption spectroscopy. We then report the observation of periodic broad modes up to the 8th order in Raman spectra, attributed to the polaronic character of excitons. We establish that this polaronic character is dominated by the coupling between the charge-transfer exciton at 1.96 eV and a longitudinal optical phonon at 120.6 cm−1. We further show that the emergence of long-range magnetic order enhances the electron-phonon coupling strength by ~50% and that the transition from layered antiferromagnetic to ferromagnetic order tunes the spectral intensity of the periodic broad modes, suggesting a strong coupling among the lattice, charge and spin in two-dimensional CrI3. Our study opens opportunities for tailoring light-matter interactions in two-dimensional magnetic semiconductors. 
    more » « less
  3. Abstract Spin-orbit torques (SOT) enable efficient electrical control of the magnetic state of ferromagnets, ferrimagnets and antiferromagnets. However, the conventional SOT has severe limitation that only in-plane spins accumulate near the surface, whether interpreted as a spin Hall effect (SHE) or as an Edelstein effect. Such a SOT is not suitable for controlling perpendicular magnetization, which would be more beneficial for realizing low-power-consumption memory devices. Here we report the observation of a giant magnetic-field-like SOT in a topological antiferromagnet Mn3Sn, whose direction and size can be tuned by changing the order parameter direction of the antiferromagnet. To understand the magnetic SHE (MSHE)- and the conventional SHE-induced SOTs on an equal footing, we formulate them as interface spin-electric-field responses and analyzed using a macroscopic symmetry analysis and a complementary microscopic quantum kinetic theory. In this framework, the large out-of-plane spin accumulation due to the MSHE has an inter-band origin and is likely to be caused by the large momentum-dependent spin splitting in Mn3Sn. Our work demonstrates the unique potential of antiferromagnetic Weyl semimetals in overcoming the limitations of conventional SOTs and in realizing low-power spintronics devices with new functionalities. 
    more » « less
  4. Abstract Tuning the properties of a pair of entangled electron and hole in a light-induced exciton is a fundamentally intriguing inquiry for quantum science. Here, using semiconducting hybrid perovskite as an exploratory platform, we discover that Nd2+-doped CH3NH3PbI3(MAPbI3) perovskite exhibits a Kondo-like exciton-spin interaction under cryogenic and photoexcitation conditions. The feedback to such interaction between excitons in perovskite and the localized spins in Nd2+is observed as notably prolonged carrier lifetimes measured by time-resolved photoluminescence, ~10 times to that of pristine MAPbI3without Nd2+dopant. From a mechanistic standpoint, such extended charge separation states are the consequence of the trap state enabled by the antiferromagnetic exchange interaction between the light-induced exciton and the localized 4 fspins of the Nd2+in the proximity. Importantly, this Kondo-like exciton-spin interaction can be modulated by either increasing Nd2+doping concentration that enhances the coupling between the exciton and Nd2+4 fspins as evidenced by elongated carrier lifetime, or by using an external magnetic field that can nullify the spin-dependent exchange interaction therein due to the unified orientations of Nd2+spin angular momentum, thereby leading to exciton recombination at the dynamics comparable to pristine MAPbI3
    more » « less
  5. Abstract We use elastic and inelastic neutron scattering (INS) to study the antiferromagnetic (AF) phase transitions and spin excitations in the two-dimensional (2D) zig-zag antiferromagnet FePSe3. By determining the magnetic order parameter across the AF phase transition, we conclude that the AF phase transition in FePSe3is first-order in nature. In addition, our INS measurements reveal that the spin waves in the AF ordered state have a large easy-axis magnetic anisotropy gap, consistent with an Ising Hamiltonian, and possible biquadratic magnetic exchange interactions. On warming acrossTN, we find that dispersive spin excitations associated with three-fold rotational symmetric AF fluctuations change into FM spin fluctuations aboveTN. These results suggest that the first-order AF phase transition in FePSe3may arise from the competition betweenC3symmetric AF andC1symmetric FM spin fluctuations aroundTN, in place of a conventional second-order AF phase transition. 
    more » « less