Abstract Constructing an artificial solid electrolyte interphase (SEI) on lithium metal electrodes is a promising approach to address the rampant growth of dangerous lithium morphologies (dendritic and dead Li0) and low Coulombic efficiency that plague development of lithium metal batteries, but how Li+transport behavior in the SEI is coupled with mechanical properties remains unknown. We demonstrate here a facile and scalable solution-processed approach to form a Li3N-rich SEI with a phase-pure crystalline structure that minimizes the diffusion energy barrier of Li+across the SEI. Compared with a polycrystalline Li3N SEI obtained from conventional practice, the phase-pure/single crystalline Li3N-rich SEI constitutes an interphase of high mechanical strength and low Li+diffusion barrier. We elucidate the correlation among Li+transference number, diffusion behavior, concentration gradient, and the stability of the lithium metal electrode by integrating phase field simulations with experiments. We demonstrate improved reversibility and charge/discharge cycling behaviors for both symmetric cells and full lithium-metal batteries constructed with this Li3N-rich SEI. These studies may cast new insight into the design and engineering of an ideal artificial SEI for stable and high-performance lithium metal batteries. 
                        more » 
                        « less   
                    
                            
                            Interphases in aqueous rechargeable zinc metal batteries
                        
                    
    
            Despite extensive research efforts in developing aqueous rechargeable zinc metal batteries (RZMBs) as high-energy-density alternatives to both lithium ion and lithium metal batteries, the commercial prospects for RZMBs are still obfuscated by fundamental scientific questions. In particular, the electrode–electrolyte interphase properties and behaviors are still intensely debated topics in this field. In this review, we provide a comprehensive and thorough overview of the solid electrolyte interphase (SEI) and cathode electrolyte interphase (CEI) in aqueous RZMBs, with an emphasis on the formation mechanisms and characteristics of the SEI and CEI. We then summarize state-of-the-art techniques for characterizing the SEI/CEI to reveal the intrinsic correlation between the functionalities of the interphases and the electrochemical performances. Finally, future directions are proposed, including studies on aqueous SEI/CEI evolution as a function of pH and temperature, as well as SEI/CEI studies for high-energy-density and long-lifetime RZMBs. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2000102
- PAR ID:
- 10403711
- Date Published:
- Journal Name:
- Journal of Materials Chemistry A
- ISSN:
- 2050-7488
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The narrow electrochemical stability window of water poses a challenge to the development of aqueous electrolytes. In contrast to non‐aqueous electrolytes, the products of water electrolysis do not contribute to the formation of a passivation layer on electrodes. As a result, aqueous electrolytes require the reactions of additional components, such as additives and co‐solvents, to facilitate the formation of the desired solid electrolyte interphase (SEI) on the anode and cathode electrolyte interphase (CEI) on the cathode. This review highlights the fundamental principles and recent advancements in generating electrolyte interphases in aqueous batteries.more » « less
- 
            Despite substantial research efforts in developing high-voltage sodium-ion batteries (SIBs) as high-energy-density alternatives to complement lithium-ion-based energy storage technologies, the lifetime of high-voltage SIBs is still associated with many fundamental scientific questions. In particular, the structure phase transition, oxygen loss, and cathode–electrolyte interphase (CEI) decay are intensely discussed in the field. Synchrotron X-ray and neutron scattering characterization techniques offer unique capabilities for investigating the complex structure and dynamics of high-voltage cathode behavior. In this review, to accelerate the development of stable high-voltage SIBs, we provide a comprehensive and thorough overview of the use of synchrotron X-ray and neutron scattering in studying SIB cathode materials with an emphasis on high-voltage layered transition metal oxide cathodes. We then discuss these characterizations in relation to polyanion-type cathodes, Prussian blue analogues, and organic cathode materials. Finally, future directions of these techniques in high-voltage SIB research are proposed, including CEI studies for polyanion-type cathodes and the extension of neutron scattering techniques, as well as the integration of morphology and phase characterizations.more » « less
- 
            Abstract A new concentrated ternary salt ether‐based electrolyte enables stable cycling of lithium metal battery (LMB) cells with high‐mass‐loading (13.8 mg cm−2, 2.5 mAh cm−2) NMC622 (LiNi0.6Co0.2Mn0.2O2) cathodes and 50 μm Li anodes. Termed “CETHER‐3,” this electrolyte is based on LiTFSI, LiDFOB, and LiBF4with 5 vol% fluorinated ethylene carbonate in 1,2‐dimethoxyethane. Commercial carbonate and state‐of‐the‐art binary salt ether electrolytes were also tested as baselines. With CETHER‐3, the electrochemical performance of the full‐cell battery is among the most favorably reported in terms of high‐voltage cycling stability. For example, LiNixMnyCo1–x–yO2(NMC)‐Li metal cells retain 80% capacity at 430 cycles with a 4.4 V cut‐off and 83% capacity at 100 cycles with a 4.5 V cut‐off (charge at C/5, discharge at C/2). According to simulation by density functional theory and molecular dynamics, this favorable performance is an outcome of enhanced coordination between Li+and the solvent/salt molecules. Combining advanced microscopy (high‐resolution transmission electron microscopy, scanning electron microscopy) and surface science (X‐ray photoelectron spectroscopy, time‐of‐fight secondary ion mass spectroscopy, Fourier‐transform infrared spectroscopy, Raman spectroscopy), it is demonstrated that a thinner and more stable cathode electrolyte interphase (CEI) and solid electrolyte interphase (SEI) are formed. The CEI is rich in lithium sulfide (Li2SO3), while the SEI is rich in Li3N and LiF. During cycling, the CEI/SEI suppresses both the deleterious transformation of the cathode R‐3m layered near‐surface structure into disordered rock salt and the growth of lithium metal dendrites.more » « less
- 
            Abstract Lithium metal is a promising anode for energy-dense batteries but is hindered by poor reversibility caused by continuous chemical and electrochemical degradation. Here we find that by increasing the Li plating capacity to high values ( e.g ., 10–50 mAh cm −2 ), Li deposits undergo a morphological transition to produce dense structures, composed of large grains with dominantly (110) Li crystallographic facets. The resultant Li metal electrodes manifest fast kinetics for lithium stripping/plating processes with higher exchange current density, but simultaneously exhibit elevated electrochemical stability towards the electrolyte. Detailed analysis of these findings reveal that parasitic electrochemical reactions are the major reason for poor Li reversibility, and that the degradation rate from parasitic electroreduction of electrolyte components is about an order of magnitude faster than from chemical reactions. The high-capacity Li electrodes provide a straightforward strategy for interrogating the solid electrolyte interphase (SEI) on Li —with unprecedented, high signal to noise. We find that an inorganic rich SEI is formed and is primarily concentrated around the edges of lithium particles. Our findings provide straightforward, but powerful approaches for enhancing the reversibility of Li and for fundamental studies of the interphases formed in liquid and solid-state electrolytes using readily accessible analytical tools.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    