Abstract MotivationAdvances in whole-genome single-cell DNA sequencing (scDNA-seq) have led to the development of numerous methods for detecting copy number aberrations (CNAs), a key driver of genetic heterogeneity in cancer. While most of these methods are limited to the inference of total copy number, some recent approaches now infer allele-specific CNAs using innovative techniques for estimating allele-frequencies in low coverage scDNA-seq data. However, these existing allele-specific methods are limited in their segmentation strategies, a crucial step in the CNA detection pipeline. ResultsWe present SEACON (Single-cell Estimation of Allele-specific COpy Numbers), an allele-specific copy number profiler for scDNA-seq data. SEACON uses a Gaussian Mixture Model to identify latent copy number states and breakpoints between contiguous segments across cells, filters the segments for high-quality breakpoints using an ensemble technique, and adopts several strategies for tolerating noisy read-depth and allele frequency measurements. Using a wide array of both real and simulated datasets, we show that SEACON derives accurate copy numbers and surpasses existing approaches under numerous experimental conditions, and identify its strengths and weaknesses. Availability and implementationSEACON is implemented in Python and is freely available open-source from https://github.com/NabaviLab/SEACON and https://doi.org/10.5281/zenodo.12727008.
more »
« less
CNAViz: An interactive webtool for user-guided segmentation of tumor DNA sequencing data
Copy-number aberrations (CNAs) are genetic alterations that amplify or delete the number of copies of large genomic segments. Although they are ubiquitous in cancer and, thus, a critical area of current cancer research, CNA identification from DNA sequencing data is challenging because it requires partitioning of the genome into complex segments with the same copy-number states that may not be contiguous. Existing segmentation algorithms address these challenges either by leveraging the local information among neighboring genomic regions, or by globally grouping genomic regions that are affected by similar CNAs across the entire genome. However, both approaches have limitations: overclustering in the case of local segmentation, or the omission of clusters corresponding to focal CNAs in the case of global segmentation. Importantly, inaccurate segmentation will lead to inaccurate identification of CNAs. For this reason, most pan-cancer research studies rely on manual procedures of quality control and anomaly correction. To improve copy-number segmentation, we introduce CNAV iz , a web-based tool that enables the user to simultaneously perform local and global segmentation, thus overcoming the limitations of each approach. Using simulated data, we demonstrate that by several metrics, CNAV iz allows the user to obtain more accurate segmentation relative to existing local and global segmentation methods. Moreover, we analyze six bulk DNA sequencing samples from three breast cancer patients. By validating with parallel single-cell DNA sequencing data from the same samples, we show that by using CNAV iz , our user was able to obtain more accurate segmentation and improved accuracy in downstream copy-number calling.
more »
« less
- PAR ID:
- 10404503
- Editor(s):
- Przytycka, Teresa M.
- Date Published:
- Journal Name:
- PLOS Computational Biology
- Volume:
- 18
- Issue:
- 10
- ISSN:
- 1553-7358
- Page Range / eLocation ID:
- e1010614
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Genome copy number is an important source of genetic variation in health and disease. In cancer, Copy Number Alterations (CNAs) can be inferred from short-read sequencing data, enabling genomics-based precision oncology. Emerging Nanopore sequencing technologies offer the potential for broader clinical utility, for example in smaller hospitals, due to lower instrument cost, higher portability, and ease of use. Nonetheless, Nanopore sequencing devices are limited in the number of retrievable sequencing reads/molecules compared to short-read sequencing platforms, limiting CNA inference accuracy. To address this limitation, we targeted the sequencing of short-length DNA molecules loaded at optimized concentration in an effort to increase sequence read/molecule yield from a single nanopore run. We show that short-molecule nanopore sequencing reproducibly returns high read counts and allows high quality CNA inference. We demonstrate the clinical relevance of this approach by accurately inferring CNAs in acute myeloid leukemia samples. The data shows that, compared to traditional approaches such as chromosome analysis/cytogenetics, short molecule nanopore sequencing returns more sensitive, accurate copy number information in a cost effective and expeditious manner, including for multiplex samples. Our results provide a framework for short-molecule nanopore sequencing with applications in research and medicine, which includes but is not limited to, CNAs.more » « less
-
Abstract Copy number aberrations (CNAs) are ubiquitous in many types of cancer. Inferring CNAs from cancer genomic data could help shed light on the initiation, progression, and potential treatment of cancer. While such data have traditionally been available via “bulk sequencing,” the more recently introduced techniques for single-cell DNA sequencing (scDNAseq) provide the type of data that makes CNA inference possible at the single-cell resolution. We introduce a new birth-death evolutionary model of CNAs and a Bayesian method, NestedBD, for the inference of evolutionary trees (topologies and branch lengths with relative mutation rates) from single-cell data. We evaluated NestedBD’s performance using simulated data sets, benchmarking its accuracy against traditional phylogenetic tools as well as state-of-the-art methods. The results show that NestedBD infers more accurate topologies and branch lengths, and that the birth-death model can improve the accuracy of copy number estimation. And when applied to biological data sets, NestedBD infers plausible evolutionary histories of two colorectal cancer samples. NestedBD is available athttps://github.com/Androstane/NestedBD.more » « less
-
Abstract Background Every tumor is composed of heterogeneous clones, each corresponding to a distinct subpopulation of cells that accumulated different types of somatic mutations, ranging from single-nucleotide variants (SNVs) to copy-number aberrations (CNAs). As the analysis of this intra-tumor heterogeneity has important clinical applications, several computational methods have been introduced to identify clones from DNA sequencing data. However, due to technological and methodological limitations, current analyses are restricted to identifying tumor clones only based on either SNVs or CNAs, preventing a comprehensive characterization of a tumor’s clonal composition. Results To overcome these challenges, we formulate the identification of clones in terms of both SNVs and CNAs as a integration problem while accounting for uncertainty in the input SNV and CNA proportions. We thus characterize the computational complexity of this problem and we introduce PACTION (PArsimonious Clone Tree integratION), an algorithm that solves the problem using a mixed integer linear programming formulation. On simulated data, we show that tumor clones can be identified reliably, especially when further taking into account the ancestral relationships that can be inferred from the input SNVs and CNAs. On 49 tumor samples from 10 prostate cancer patients, our integration approach provides a higher resolution view of tumor evolution than previous studies. Conclusion PACTION is an accurate and fast method that reconstructs clonal architecture of cancer tumors by integrating SNV and CNA clones inferred using existing methods.more » « less
-
Abstract Low-pass single-cell DNA sequencing technologies and algorithmic advancements have enabled haplotype-specific copy number calling on thousands of cells within tumors. However, measurement uncertainty may result in spurious CNAs inconsistent with realistic evolutionary constraints. We introduce evolution-aware copy number calling via deep reinforcement learning (CNRein). Our simulations demonstrate CNRein infers more accurate copy-number profiles and better recapitulates ground truth clonal structure than existing methods. On sequencing data of breast and ovarian cancer, CNRein produces more parsimonious solutions than existing methods while maintaining agreement with single-nucleotide variants. Additionally, CNRein shows consistency on a breast cancer patient sequenced with distinct low-pass technologies.more » « less
An official website of the United States government

