skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electron and ion transport in semi-dilute conjugated polyelectrolytes: view from a coarse-grained tight binding model
Conjugated polyelectrolytes (CPEs) are a rising class of organic mixed ionic-electronic conductors, with applications in bio-interfacing electronics and energy harvesting and storage devices. Here, we employ a quantum mechanically informed coarse-grained model coupled with semiclassical rate theory to generate a first view of semidilute CPE morphologies and their corresponding ionic and electronic transport properties. We observe that the poor solvent quality of CPE backbones drives the formation of electrostatically repulsive fibers capable of forming percolating networks at semi-dilute concentrations. The thickness of the fibers and the degree of intrafiber connectivity are found to strongly influence electronic transport. Calculated structure factors reveal that fiber formation alters the position and scaling of the inter-chain PE peak relative to good solvent predictions and induces a narrower distribution of interchain spacings. We also observe that electrostatic interactions play a significant role in determining CPE morphology, but have only a small impact on the local site energetics. This work presents a significant step forward in the ability to predict CPE morphology and ion-electron transport properties, and provides insights into how morphology influences electronic and ionic transport in conjugated materials.  more » « less
Award ID(s):
2154916
PAR ID:
10406145
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Molecular Systems Design & Engineering
ISSN:
2058-9689
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Conjugated polyelectrolytes (CPEs) exhibit a strong interplay between ionic and electronic properties, enabling tunable photophysical properties and charge transport dynamics. Polyelectrolyte complexation represents a versatile self‐assembly strategy to control the properties of CPEs by forming dense phases with varying optoelectronic and mechanical characteristics. This study focuses on ionically assembled complexes comprising oppositely charged self‐doped CPE (CPE‐K) and bottlebrush polyelectrolyte (BPE). It is demonstrated that subtle adjustments in the composition of CPE‐K:BPE blends enables tuning of photophysical and viscoelastic properties. It is observed that increasing the CPE‐K:BPE monomeric ratio from 1:1 to 1:3 in the initial solution for complexation induces a significant bathochromic shift in the maximum photoluminescence intensity of the dense phase, from 1.8 to 1.4 eV. Additionally, a higher BPE content enhances the softness and adhesion of the solid complex, while maintaining yield‐stress behavior and cyclability of the dense phase. The ability to electrochemically and statically dope the CPE‐K–BPE complex, effectively modulating its charge transport and optoelectronic properties is also demonstrated. This work underscores the potential of these complex‐fluid phases for developing soft, adhesive, and elastic mixed ionic‐electronic conductors with tunable properties for functional applications and 3D‐printing. 
    more » « less
  2. null (Ed.)
    Polymeric mixed ionic-electronic conductors (MIECs) combine aspects of conjugated polymers, polymer electrolytes, and polyelectrolytes to simultaneously transport and couple ionic and electronic charges, opening exciting new applications in energy storage and conversion, bioelectronics, and display technologies. The many applications of polymeric MIECs lead to a wide range of transport conditions. Ionic and electronic transport are directly coupled through electrochemical doping, while the mechanisms of ionic and electronic transport depend on distinctly different chemical functionality, (macro)molecular structure, and morphology. Despite this, ionic and electronic transport are surprisingly tunable, independent of one another. We review the various types of polymeric MIECs, the mechanisms of ionic and electronic charge transport across conditions, and the interrelations between the two, with special emphasis on the unique aspects of polymeric MIEC transport phenomena. Expected final online publication date for the Annual Review of Materials Science, Volume 51 is August 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates. 
    more » « less
  3. Abstract Conjugated polyelectrolytes (CPEs), comprised of conjugated backbones and pendant ionic functionalities, are versatile organic materials with diverse applications. However, the myriad of possible molecular structures of CPEs render traditional, trial-and-error materials discovery strategy impractical. Here, we tackle this problem using a data-centric approach by incorporating machine learning with high-throughput first-principles calculations. We systematically examine how key materials properties depend on individual structural components of CPEs and from which the structure–property relationships are established. By means of machine learning, we uncover structural features crucial to the CPE properties, and these features are then used as descriptors in the machine learning to predict the properties of unknown CPEs. Lastly, we discover promising CPEs as hole transport materials in halide perovskite-based optoelectronic devices and as photocatalysts for water splitting. Our work could accelerate the discovery of CPEs for optoelectronic and photocatalytic applications. 
    more » « less
  4. There is great interest in developing inexpensive, molecular light-harvesting systems capable of efficiently converting photon energy to chemical potential energy. It is highly desirable to do so using self-assembly and in a manner that supports environmentally benign processing. A critical consideration in any such assembly is the ability to absorb a substantial fraction of the solar emission spectrum and to be able to efficiently move excited states through the space to a functional interface. We have previously shown that aqueous inter-conjugated polyelectrolyte (CPE) complexes can act as ultrafast and efficient energy-transfer antennae. Here we demonstrate formation of a hierarchically assembled, aqueous system based on an inter-CPE exciton donor/acceptor network and a lipid vesicle scaffold. Using a model small-molecule organic semiconductor embedded in the vesicle membrane, we form a ternary exciton funnel that is oriented towards the membrane interior. We show that, although energy transfer is efficient, the assembly morphology depends sensitively on preparation conditions and relative ionic stoichiometry. We propose several approaches towards stabilizing such aqueous assemblies. This work highlights a path to formation of an aqueous, panchromatic light-harvesting system, whose functional complexity can be systematically increased with modularity. 
    more » « less
  5. Conjugated polymers are at the heart of numerous current and emerging technologies. Doping, a process by which charge carriers are introduced, is crucial to their functionality and performance. Despite significant historical context and the exploration of a broad chemical space, doping processes that are activated by formation of a ground-state charge-transfer complex (GS-CTC), which is mediated by the supramolecular hybridization between the frontier molecular orbitals of distinct molecular species, remain poorly understood. There are no clear demonstrations of this phenomena in contemporary donor–acceptor (DA) conjugated polymers (CP). Here, using diketopyrrolopyrrole-based donor–acceptor semiconducting polymers and a -conjugated penta-t-butylpentacyanopentabenzo[25]annulene “cyanostar” macrocycle, we demonstrate the first examples of features that control GS-CTC formation in contemporary DA CP frameworks. Using complementary experimental techniques and theory, we articulate how subtle molecular, electronic, and solid-state features impact supramolecular hybridization of the frontier molecular orbitals and impact the resultant (opto)electronic, magnetic, and transport properties. These studies demonstrate that subtle effects arising from the admixture between distinct -conjugated materials can have dramatic outcomes on properties and performance through modification of the density of states (DOS). These results will enable completely new design rules for organic semiconductors with precise property control. 
    more » « less