skip to main content


Title: Superfluid response of an atomically thin gate-tuned van der Waals superconductor
Abstract

A growing number of two-dimensional superconductors are being discovered in the family of exfoliated van der Waals materials. Due to small sample volume, the superfluid response of these materials has not been characterized. Here, we use a local magnetic probe to directly measure this key property of the tunable, gate-induced superconducting state in MoS2. We find that the backgate changes the transition temperature non-monotonically whereas the superfluid stiffness at low temperature and the normal state conductivity monotonically increase. In some devices, we find direct signatures in agreement with a Berezinskii-Kosterlitz-Thouless transition, whereas in others we find a broadened onset of the superfluid response. We show that the observed behavior is consistent with disorder playing an important role in determining the properties of superconducting MoS2. Our work demonstrates that magnetic property measurements are within reach for superconducting devices based on exfoliated sheets and reveals that the superfluid response significantly deviates from simple BCS-like behavior.

 
more » « less
Award ID(s):
1719875 2004864
NSF-PAR ID:
10406542
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This paper addresses the transition from the normal to the superfluid state in strongly correlated two dimensional fermionic superconductors and Fermi gases. We arrive at the Berezinskii–Kosterlitz–Thouless (BKT) temperatureTBKTas a function ofattractivepairing strength by associating it with the onset of ‘quasi-condensation’ in the normal phase. Our approach builds on a criterion for determining the BKT transition temperature for atomic gases which is based on a well established quantum Monte Carlo analysis of the phase space density. This latter quantity, when derived from BCS–BEC crossover theory for fermions, leads to non-monotonic behavior forTBKTas a function of the attractive interaction or inverse scattering length. In Fermi gases, this implies a robust superconducting dome followed by a long tail from the flat BEC asymptote, rather similar to what is observed experimentally. For lattice systems we find thatTBKThas an absolute maximum of the order of 0.1EF. We discuss how our results compare with those derived from the Nelson–Kosterlitz criterion based on the mean field superfluid density and the approach to the transition from below. While there is agreement in the strict mean-field BCS regime at weak coupling, we find that at moderate pairing strength bosonic excitations cause a substantial increase inTBKTfollowed by an often dramatic decrease before the system enters the BEC regime.

     
    more » « less
  2. Abstract

    Lateral heterogeneities in atomically thin 2D materials such as in‐plane heterojunctions and grain boundaries (GBs) provide an extrinsic knob for manipulating the properties of nano‐ and optoelectronic devices and harvesting novel functionalities. However, these heterogeneities have the potential to adversely affect the performance and reliability of the 2D devices through the formation of nanoscopic hot‐spots. In this report, scanning thermal microscopy (SThM) is utilized to map the spatial distribution of the temperature rise within monolayer transition metal dichalcogenide (TMD) devices upon dissipating a high electrical power through a lateral interface. The results directly demonstrate that lateral heterojunctions between MoS2and WS2do not largely impact the distribution of heat dissipation, while GBs of MoS2appreciably localize heating in the device. High‐resolution scanning transmission electron microscopy reveals that the atomic structure is nearly flawless around heterojunctions but can be quite defective near GBs. The results suggest that the interfacial atomic structure plays a crucial role in enabling uniform charge transport without inducing localized heating. Establishing such structure–property‐processing correlation provides a better understanding of lateral heterogeneities in 2D TMD systems which is crucial in the design of future all‐2D electronic circuitry with enhanced functionalities, lifetime, and performance.

     
    more » « less
  3. Abstract

    2D transition‐metal‐dichalcogenide materials, such as molybdenum disulfide (MoS2) have received immense interest owing to their remarkable structure‐endowed electronic, catalytic, and mechanical properties for applications in optoelectronics, energy storage, and wearable devices. However, 2D materials have been rarely explored in the field of micro/nanomachines, motors, and robots. Here, MoS2 with anatase TiO2 is successfully integrated into an original one‐side‐open hollow micromachine, which demonstrates increased light absorption of TiO2‐based micromachines to the visible region and the first observed motion acceleration in response to ionic media. Both experimentation and theoretical analysis suggest the unique type‐II bandgap alignment of MoS2/TiO2 heterojunction that accounts for the observed unique locomotion owing to a competing propulsion mechanism. Furthermore, by leveraging the chemical properties of MoS2/TiO2, the micromachines achieve sunlight‐powered water disinfection with 99.999% Escherichia coli lysed in an hour. This research suggests abundant opportunities offered by 2D materials in the creation of a new class of micro/nanomachines and robots.

     
    more » « less
  4. Abstract

    Theoretical and experimental investigations of various exfoliated samples taken from layered In4Se3crystals are performed. In spite of the ionic character of interlayer interactions in In4Se3and hence much higher calculated cleavage energies compared to graphite, it is possible to produce few‐nanometer‐thick flakes of In4Se3by mechanical exfoliation of its bulk crystals. The In4Se3flakes exfoliated on Si/SiO2have anisotropic electronic properties and exhibit field‐effect electron mobilities of about 50 cm2 V−1 s−1at room temperature, which are comparable with other popular transition metal chalcogenide (TMC) electronic materials, such as MoS2and TiS3. In4Se3devices exhibit a visible range photoresponse on a timescale of less than 30 ms. The photoresponse depends on the polarization of the excitation light consistent with symmetry‐dependent band structure calculations for the most expectedaccleavage plane. These results demonstrate that mechanical exfoliation of layered ionic In4Se3crystals is possible, while the fast anisotropic photoresponse makes In4Se3a competitive electronic material, in the TMC family, for emerging optoelectronic device applications.

     
    more » « less
  5. Abstract

    The oxidation mechanism of atomically thin molybdenum disulfide (MoS2) plays a critical role in its nanoelectronics, optoelectronics, and catalytic applications, where devices often operate in an elevated thermal environment. In this study, we systematically investigate the oxidation of mono- and few-layer MoS2flakes in the air at temperatures ranging from 23 °C to 525 °C and relative humidities of 10%–60% by using atomic force microscopy (AFM), Raman spectroscopy and x-ray photoelectron spectroscopy. Our study reveals the formation of a uniform nanometer-thick physical adsorption layer on the surface of MoS2, which is attributed to the adsorption of ambient moisture. This physical adsorption layer acts as a thermal shield of the underlying MoS2lattice to enhance its thermal stability and can be effectively removed by an AFM tip scanning in contact mode or annealing at 400 °C. Our study shows that high-temperature thermal annealing and AFM tip-based cleaning result in chemical adsorption on sulfur vacancies in MoS2, leading to p-type doping. Our study highlights the importance of humidity control in ensuring reliable and optimal performance for MoS2-based electronic and electrochemical devices and provides crucial insights into the surface engineering of MoS2, which are relevant to the study of other two-dimensional transition metal dichalcogenide materials and their applications.

     
    more » « less