skip to main content


Title: Closed-loop feedback control of microfluidic cell manipulation via deep-learning integrated sensor networks
Microfluidic technologies have long enabled the manipulation of flow-driven cells en masse under a variety of force fields with the goal of characterizing them or discriminating the pathogenic ones. On the other hand, a microfluidic platform is typically designed to function under optimized conditions, which rarely account for specimen heterogeneity and internal/external perturbations. In this work, we demonstrate a proof-of-principle adaptive microfluidic system that consists of an integrated network of distributed electrical sensors for on-chip tracking of cells and closed-loop feedback control that modulates chip parameters based on the sensor data. In our system, cell flow speed is measured at multiple locations throughout the device, the data is interpreted in real-time via deep learning-based algorithms, and a proportional-integral feedback controller updates a programmable pressure pump to maintain a desired cell flow speed. We validate the adaptive microfluidic system with both static and dynamic targets and also observe a fast convergence of the system under continuous external perturbations. With an ability to sustain optimal processing conditions in unsupervised settings, adaptive microfluidic systems would be less prone to artifacts and could eventually serve as reliable standardized biomedical tests at the point of care.  more » « less
Award ID(s):
1752170
NSF-PAR ID:
10407957
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Lab on a Chip
Volume:
21
Issue:
10
ISSN:
1473-0197
Page Range / eLocation ID:
1916 to 1928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract <p>Hormone replacement therapies have become important for treating diseases such as premature ovarian failure or menopausal complications. The clinical use of bioidentical hormones might significantly reduce some of the potential risks reportedly associated with the use of synthetic hormones. In the present study, we demonstrate the utility and advantage of a microfluidic chip culture system to enhance the development of personalized, on-demand, treatment modules using embryoid bodies (EBs). Functional EBs cultured on microfluidic chips represent a platform for personalized, patient-specific treatment cassettes that can be cryopreserved until required for treatment. We assessed the viability, differentiation, and functionality of EBs cultured and cryopreserved in this system. During extended microfluidic culture, estradiol, progesterone, testosterone, and anti-müllerian hormone levels were measured, and the expression of differentiated steroidogenic cells was confirmed by immunocytochemistry assay for the ovarian tissue markers anti-müllerian hormone receptor type II, follicle-stimulating hormone receptor, and inhibin β-A and the estrogen biosynthesis enzyme aromatase. Our studies showed that under microfluidic conditions, differentiated steroidogenic EBs continued to secrete estradiol and progesterone at physiologically relevant concentrations (30–120 pg/ml and 150–450 pg/ml, respectively) for up to 21 days. Collectively, we have demonstrated for the first time the feasibility of using a microfluidic chip system with continuous flow for the differentiation and extended culture of functional steroidogenic stem cell-derived EBs, the differentiation of EBs into cells expressing ovarian antigens in a microfluidic system, and the ability to cryopreserve this system with restoration of growth and functionality on thawing. These results present a platform for the development of a new therapeutic system for personalized medicine.</p></sec> </div> <a href='#' class='show open-abstract' style='margin-left:10px;'>more »</a> <a href='#' class='hide close-abstract' style='margin-left:10px;'>« less</a> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10098507-electronic-profiling-membrane-antigen-expression-via-immunomagnetic-cell-manipulation" itemprop="url"> <span class='span-link' itemprop="name">Electronic profiling of membrane antigen expression via immunomagnetic cell manipulation</span> </a> </div> <div> <strong> <a class="misc external-link" href="https://doi.org/10.1039/c9lc00297a" target="_blank" title="Link to document DOI">https://doi.org/10.1039/c9lc00297a  <span class="fas fa-external-link-alt"></span></a> </strong> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Civelekoglu, Ozgun</span> <span class="sep">; </span><span class="author" itemprop="author">Wang, Ningquan</span> <span class="sep">; </span><span class="author" itemprop="author">Boya, Mert</span> <span class="sep">; </span><span class="author" itemprop="author">Ozkaya-Ahmadov, Tevhide</span> <span class="sep">; </span><span class="author" itemprop="author">Liu, Ruxiu</span> <span class="sep">; </span><span class="author" itemprop="author">Sarioglu, A. Fatih</span> </span> <span class="year">( <time itemprop="datePublished" datetime="2019-01-01">January 2019</time> , Lab on a Chip) </span> </div> <div style="cursor: pointer;-webkit-line-clamp: 5;" class="abstract" itemprop="description"> Membrane antigens control cell function by regulating biochemical interactions and hence are routinely used as diagnostic and prognostic targets in biomedicine. Fluorescent labeling and subsequent optical interrogation of cell membrane antigens, while highly effective, limit expression profiling to centralized facilities that can afford and operate complex instrumentation. Here, we introduce a cytometry technique that computes surface expression of immunomagnetically labeled cells by electrically tracking their trajectory under a magnetic field gradient on a microfluidic chip with a throughput of >500 cells per min. In addition to enabling the creation of a frugal cytometry platform, this immunomagnetic cell manipulation-based measurement approach allows direct expression profiling of target subpopulations from non-purified samples. We applied our technology to measure epithelial cell adhesion molecule expression on human breast cancer cells. Once calibrated, surface expression and size measurements match remarkably well with fluorescence-based measurements from a commercial flow cytometer. Quantitative measurements of biochemical and biophysical cell characteristics with a disposable cytometer have the potential to impact point of care testing of clinical samples particularly in resource limited settings. </div> <a href='#' class='show open-abstract' style='margin-left:10px;'>more »</a> <a href='#' class='hide close-abstract' style='margin-left:10px;'>« less</a> </div><div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemscope itemtype="http://schema.org/TechArticle"> <div class="item-info"> <div class="title"> <a href="https://par.nsf.gov/biblio/10478529-advances-sensor-developments-cell-culture-monitoring" itemprop="url"> <span class='span-link' itemprop="name">Advances in sensor developments for cell culture monitoring</span> </a> </div> <div> <strong> <a class="misc external-link" href="https://doi.org/10.1002/bmm2.12047" target="_blank" title="Link to document DOI">https://doi.org/10.1002/bmm2.12047  <span class="fas fa-external-link-alt"></span></a> </strong> </div> <div class="metadata"> <span class="authors"> <span class="author" itemprop="author">Kim, Ka Ram</span> <span class="sep">; </span><span class="author" itemprop="author">Yeo, Woon‐Hong</span> </span> <span class="year">( <time itemprop="datePublished" datetime="2023-09-19">September 2023</time> , BMEMat) </span> </div> <div style="cursor: pointer;-webkit-line-clamp: 5;" class="abstract" itemprop="description"> <title>Abstract

    Cell culture encompasses procedures for extracting cells from their natural tissue and cultivating them under controlled artificial conditions. During this process, various factors, including cell physiological/morphological properties, culture environments, metabolites, and contaminants, have to be precisely controlled and monitored for the survival of cells and the pursuit of the desired properties of the cells. This review summarizes recent advances in sensor technologies and manufacturing strategies for various cell culture platforms using traditional plastics, microfluidic chips, and scalable bioreactors. We share the details of newly developed biological sensors, chemical sensors, optical sensors, electronic chip technologies, and material integration methods. The precise control of parameters based on the feedback by these sensors and electronics enhances cell culture quality and throughput.

     
    more » « less
  2. Magnetohydrodynamics (MHD) is a unique approach for pumping fluids on a microscale and is highly suitable for enabling multiple functions for chemical analysis on a chip. An ionic current, j , is established in the fluid between selectively-activated electrodes in the presence of a magnetic field, B , that is perpendicular to the current, to generate a force, F B , orthogonal to j and B , through the right hand rule. F B is a body force that propels the liquid in the same direction through momentum transfer. We use microelectrodes, which are patterned into different, individually-addressable geometries on chips. Those electrodes are modified with poly(3,4-ethylenedioxythiophene), PEDOT, a conducting polymer, that converts the applied electronic current in the external circuit to ionic current in the fluid [1]. A small NdFeB permanent magnet is placed under the chip to provide B . By strategic activation of the electrodes, fluid flow can be programmable. For example, we previously demonstrated that MHD can start, stop, reverse, adjust speed, and alter profiles of the fluid flow. We have also shown recently that MHD fluid flow can be diverted in a contactless way by magnetic field gradients when paramagnetic species are present [2]. In our presentation, we will discuss how MHD can control the paths of individual microvolumes of different fluids for mixing, sampling, and injection. We will describe the conditions that lead to and the resulting flow profiles that result from adjacent counter flows, transverse paths, and different solvent compositions. Acknowledgements: We are grateful for financial support from the National Science Foundation (CMI-1808286) and Arkansas Bioscience Institute, the major research component of the Arkansas Tobacco Settlement Proceeds Act of 2000. References [1] Khan, F. Z.; Fritsch, I. “Chip-Scale Electrodeposition and Analysis of Poly(3,4-ethylenedioxythiophene) (PEDOT) Films for Enhanced and Sustained Microfluidics Using DC-Redox-Magnetohydrodynamics”, Journal of The Electrochemical Society 2019 , 166 (13), H615-H627. [2] Hähnel, V.; Khan, F. Z.; Mutschke, G.; Cierpka, C.; Uhlemann, M.; Fritsch, I. “Combining magnetic forces for contactless manipulation of fluids in microelectrode-microfluidic systems:, Scientific Reports 2019 , 9:5103. 
    more » « less
  3. Abstract

    This article presents the development and testing of a low‐cost (<$60), portable, electrical impedance‐based microflow cytometer for single‐cell analysis under a controlled oxygen microenvironment. The system is based on an AD5933 impedance analyzer chip, a microfluidic chip, and an Arduino microcontroller operated by a custom Android application. A representative case study on human red blood cells (RBCs) affected by sickle cell disease is conducted to demonstrate the capability of the cytometry system. Impedance values of sickle blood samples exhibit remarkable deviations from the common reference line obtained from two normal blood samples. Such deviation is quantified by a conformity score, which allows for the measurement of intrapatient and interpatient variations of sickle cell disease. A low conformity score under oxygenated conditions or drastically different conformity scores between oxygenated and deoxygenated conditions can be used to differentiate a sickle blood sample from normal. Furthermore, an equivalent circuit model of a suspended biological cell is used to interpret the electrical impedance of single flowing RBCs. In response to hypoxia treatment, all samples, regardless of disease state, exhibit significant changes in at least one single‐cell electrical property, that is, cytoplasmic resistance and membrane capacitance. The overall response to hypoxia is less in normal cells than those affected by sickle cell disease, where the change in membrane capacitance varies from −23% to seven times as compared with −17% in normal cells. The results reported in this article suggest that the developed method of testing demonstrates the potential application for a low‐cost screening technique for sickle cell disease and other diseases in the field and low‐resource settings. The developed system and methodology can be extended to analyze cellular response to hypoxia in other cell types.

     
    more » « less