skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PaCo: Preconditions Attributed to Commonsense Knowledge
Humans can seamlessly reason with circumstantial preconditions of commonsense knowledge. We understand that a glass is used for drinking water, unless the glass is broken or the water is toxic. Despite state-of-the-art (SOTA) language models’ (LMs) impressive performance on inferring commonsense knowledge, it is unclear whether they understand the circumstantial preconditions. To address this gap, we propose a novel challenge of reasoning with circumstantial preconditions. We collect a dataset, called PaCo, consisting of 12.4 thousand preconditions of commonsense statements expressed in natural language. Based on this dataset, we create three canonical evaluation tasks and use them to examine the capability of existing LMs to understand situational preconditions. Our results reveal a 10-30% gap between machine and human performance on our tasks, which shows that reasoning with preconditions is an open challenge.  more » « less
Award ID(s):
2105329
PAR ID:
10408539
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Findings of the Association for Computational Linguistics: EMNLP 2022
Page Range / eLocation ID:
6781 to 6796
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Reasoning with preconditions such as “glass can be used for drinking water unless the glass is shattered” remains an open problem for language models. The main challenge lies in the scarcity of preconditions data and the model’s lack of support for such reasoning. We present PInKS , Preconditioned Commonsense Inference with WeaK Supervision, an improved model for reasoning with preconditions through minimum supervision. We show, empirically and theoretically, that PInKS improves the results on benchmarks focused on reasoning with the preconditions of commonsense knowledge (up to 40% Macro-F1 scores). We further investigate PInKS through PAC-Bayesian informativeness analysis, precision measures, and ablation study. 
    more » « less
  2. Large-scale, pre-trained language models (LMs) have achieved human-level performance on a breadth of language understanding tasks. However, evaluations only based on end task performance shed little light on machines’ true ability in language understanding and reasoning. In this paper, we highlight the importance of evaluating the underlying reasoning process in addition to end performance. Toward this goal, we introduce Tiered Reasoning for Intuitive Physics (TRIP), a novel commonsense reasoning dataset with dense annotations that enable multi-tiered evaluation of machines’ reasoning process. Our empirical results show that while large LMs can achieve high end performance, they struggle to support their predictions with valid supporting evidence. The TRIP dataset and our baseline results will motivate verifiable evaluation of commonsense reasoning and facilitate future research toward developing better language understanding and reasoning models. 
    more » « less
  3. Natural language often describes events in different granularities, such that more coarse-grained (goal) events can often be decomposed into fine-grained sequences of (step) events. A critical but overlooked challenge in understanding an event process lies in the fact that the step events are not equally important to the central goal. In this paper, we seek to fill this gap by studying how well current models can understand the essentiality of different step events towards a goal event. As discussed by cognitive studies, such an ability enables the machine to mimic human’s commonsense reasoning about preconditions and necessary efforts of daily-life tasks. Our work contributes with a high-quality corpus of (goal, step) pairs from a community guideline website WikiHow, where the steps are manually annotated with their essentiality w.r.t. the goal. The high IAA indicates that humans have a consistent understanding of the events. Despite evaluating various statistical and massive pre-trained NLU models, we observe that existing SOTA models all perform drastically behind humans, indicating the need for future investigation of this crucial yet challenging task. 
    more » « less
  4. Harnessing commonsense knowledge poses a significant challenge for machine comprehension systems. This paper primarily focuses on incorporating a specific subset of commonsense knowledge, namely, script knowledge. Script knowledge is about sequences of actions that are typically performed by individuals in everyday life. Our experiments were centered around the MCScript dataset, which was the basis of the SemEval-2018 Task 11: Machine Comprehension using Commonsense Knowledge. As a baseline, we utilized our Three-Way Attentive Networks (TriANs) framework to model the interactions among passages, questions, and answers. Building upon the TriAN, we proposed to: (1) integrate a pre-trained language model to capture script knowledge; (2) introduce multi-layer attention to facilitate multi-hop reasoning; and (3) incorporate positional embeddings to enhance the model’s capacity for event-ordering reasoning. In this paper, we present our proposed methods and prove their efficacy in improving script knowledge integration and reasoning. 
    more » « less
  5. Understanding narratives requires reasoning about implicit world knowledge related to the causes, effects, and states of situations described in text. At the core of this challenge is how to access contextually relevant knowledge on demand and reason over it. In this paper, we present initial studies toward zero-shot commonsense question answering by formulating the task as inference over dynamically generated commonsense knowledge graphs. In contrast to previous studies for knowledge integration that rely on retrieval of existing knowledge from static knowledge graphs, our study requires commonsense knowledge integration where contextually relevant knowledge is often not present in existing knowledge bases. Therefore, we present a novel approach that generates contextually-relevant symbolic knowledge structures on demand using generative neural commonsense knowledge models. Empirical results on two datasets demonstrate the efficacy of our neuro-symbolic approach for dynamically constructing knowledge graphs for reasoning. Our approach achieves significant performance boosts over pretrained language models and vanilla knowledge models, all while providing interpretable reasoning paths for its predictions. 
    more » « less