The polar bear ( Ursus maritimus ) has become a symbol of the threat to biodiversity from climate change. Understanding polar bear evolutionary history may provide insights into apex carnivore responses and prospects during periods of extreme environmental perturbations. In recent years, genomic studies have examined bear speciation and population history, including evidence for ancient admixture between polar bears and brown bears ( Ursus arctos ). Here, we extend our earlier studies of a 130,000- to 115,000-y-old polar bear from the Svalbard Archipelago using a 10× coverage genome sequence and 10 new genomes of polar and brown bears from contemporary zones of overlap in northern Alaska. We demonstrate a dramatic decline in effective population size for this ancient polar bear’s lineage, followed by a modest increase just before its demise. A slightly higher genetic diversity in the ancient polar bear suggests a severe genetic erosion over a prolonged bottleneck in modern polar bears. Statistical fitting of data to alternative admixture graph scenarios favors at least one ancient introgression event from brown bears into the ancestor of polar bears, possibly dating back over 150,000 y. Gene flow was likely bidirectional, but allelic transfer from brown into polar bear is the strongest detected signal, which contrasts with other published work. These findings may have implications for our understanding of climate change impacts: Polar bears, a specialist Arctic lineage, may not only have undergone severe genetic bottlenecks but also been the recipient of generalist, boreal genetic variants from brown bears during critical phases of Northern Hemisphere glacial oscillations.
more »
« less
Ancient bears provide insights into Pleistocene ice age refugia in Southeast Alaska
Abstract During the Late Pleistocene, major parts of North America were periodically covered by ice sheets. However, there are still questions about whether ice‐free refugia were present in the Alexander Archipelago along the Southeast (SE) Alaska coast during the last glacial maximum (LGM). Numerous subfossils have been recovered from caves in SE Alaska, including American black (Ursus americanus) and brown (U. arctos) bears, which today are found in the Alexander Archipelago but are genetically distinct from mainland bear populations. Hence, these bear species offer an ideal system to investigate long‐term occupation, potential refugial survival and lineage turnover. Here, we present genetic analyses based on 99 new complete mitochondrial genomes from ancient and modern brown and black bears spanning the last ~45,000 years. Black bears form two SE Alaskan subclades, one preglacial and another postglacial, that diverged >100,000 years ago. All postglacial ancient brown bears are closely related to modern brown bears in the archipelago, while a single preglacial brown bear is found in a distantly related clade. A hiatus in the bear subfossil record around the LGM and the deep split of their pre‐ and postglacial subclades fail to support a hypothesis of continuous occupancy in SE Alaska throughout the LGM for either species. Our results are consistent with an absence of refugia along the SE Alaska coast, but indicate that vegetation quickly expanded after deglaciation, allowing bears to recolonize the area after a short‐lived LGM peak.
more »
« less
- Award ID(s):
- 1854550
- PAR ID:
- 10408921
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Molecular Ecology
- Volume:
- 32
- Issue:
- 13
- ISSN:
- 0962-1083
- Format(s):
- Medium: X Size: p. 3641-3656
- Size(s):
- p. 3641-3656
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Polar bear (Ursus maritimus) is the apex predator of the Arctic, largely dependent on sea-ice. The expected disappearance of the ice cover of the Arctic seas by the mid 21st century is predicted to cause a dramatic decrease in the global range and population size of the species. To place this scenario against the backdrop of past distribution changes and their causes, we use a fossil dataset to investigate the polar bear’s past distribution dynamics during the Late Glacial and the Holocene. Fossil results indicate that during the last deglaciation, polar bears were present at the southwestern margin of the Scandinavian Ice Sheet, surviving until the earliest Holocene. There are no Arctic polar bear findings from 8,000-6,000 years ago (8-6 ka), the Holocene’s warmest period. However, fossils that date from 8-9 ka and 5-6 ka suggest that the species likely survived this period in cold refugia located near the East Siberian Sea, northern Greenland and the Canadian Archipelago. Polar bear range expansion is documented by an increase in fossils during the last 4,000 years in tandem with cooling climate and expanding Arctic sea ice. The results document changes in polar bear’s distribution in response to Late Glacial and Holocene Arctic temperature and sea ice trends.more » « less
-
Yoder, Anne (Ed.)Abstract Over the past 15 years, the D-statistic, a four-taxon test for organismal admixture (hybridization, or introgression) which incorporates single nucleotide polymorphism data with allelic patterns ABBA and BABA, has seen considerable use. This statistic seeks to discern significant deviation from either a given species tree assumption, or from the balanced incomplete lineage sorting that could otherwise defy this species tree. However, while the D-statistic can successfully discriminate admixture from incomplete lineage sorting, it is not a simple matter to determine the directionality of admixture using only four-leaf tree models. As such, methods have been developed that use 5 leaves to evaluate admixture. Among these, the DFOIL method, which tests allelic patterns on the “symmetric” tree S = (((1,2),(3,4)),5), succeeds in finding admixture direction for many five-taxon examples. However, DFOIL does not make full use of all symmetry, nor can DFOIL function properly when ancient samples are included because of the reliance on singleton patterns (such as BAAAA and ABAAA). Here, we take inspiration from DFOIL to develop a new and completely general family of five-leaf admixture tests, dubbed Δ-statistics, that can either incorporate or exclude the singleton allelic patterns depending on individual taxon and age sampling choices. We describe two new shapes that are also fully testable, namely the “asymmetric” tree A = ((((1,2),3),4),5) and the “quasisymmetric” tree Q = (((1,2),3),(4,5)), which can considerably supplement the “symmetric“ S = (((1,2),(3,4)),5) model used by DFOIL. We demonstrate the consistency of Δ-statistics under various simulated scenarios, and provide empirical examples using data from black, brown and polar bears, the latter also including two ancient polar bear samples from previous studies. Recently DFOIL and one of these ancient samples was used to argue for a dominant polar bear → brown bear introgression direction. However, we find, using both this ancient polar bear and our own, that by far the strongest signal using both DFOIL and Δ-statistics on tree S is actually bidirectional gene flow of indistinguishable direction. Further experiments on trees A and Q instead highlight what were likely two phases of admixture: one with stronger brown bear → polar bear introgression in ancient times, and a more recent phase with predominant polar bear → brown bear directionality. Code and documentation available at https://github.com/KalleLeppala/Delta-statistics.more » « less
-
This dataset contains information about bear specimens (Ursus spp.) identified from two archaeological sites in Unalaska, Alaska: Margaret Bay (UNL-048, 4700 Before Present (BP)) and Amaknak Bridge (UNL-050, 2500 BP). The material is accessioned at the Museum of the Aleutians in Unalaska. Zooarchaeological data included are three dimensional scans (OBJ, MTL, and JPG files for rendering in MeshLab software) and digital photographs. 3D scans were obtained by using a DAVID SLS-3 HD Structured White Light 3D Scanner at the University of Oklahoma Laboratories of Molecular Anthropology and Microbiome Research (LMAMR). Photographs were taken with a Nikon D3400 24.2-megapixel DX format DSLR camera. Zooarchaeological analyses were performed to investigate how bears came to be in Unalaska Bay, a region where bears do not currently live. It has been suggested that this assemblage is evidence of Neoglacial expansion of sea ice in the region and subsequent range expansion of polar bears. Our goals here were to assess whether the bears can be distinguished to species and determine whether these animals were harvested locally and represent a range expansion. The results suggest that bears are very difficult to distinguish using morphological characteristics alone: we argue there is likely a mix of brown and polar bear in this small assemblage, but that morphological analyses alone are inadequate for reconstructing bear distribution in this context. However, the age profiles and butchery patterns do suggest that bears were harvested locally, and we contend that expanding Neoglacial sea ice facilitated their presence around Unalaska Island.more » « less
-
Founding populations of the first Americans likely occupied parts of Beringia during the Last Glacial Maximum (LGM). The timing, pathways, and modes of their southward transit remain unknown, but blockage of the interior route by North American ice sheets between ~26 and 14 cal kyr BP (ka) favors a coastal route during this period. Using models and paleoceanographic data from the North Pacific, we identify climatically favorable intervals when humans could have plausibly traversed the Cordilleran coastal corridor during the terminal Pleistocene. Model simulations suggest that northward coastal currents strengthened during the LGM and at times of enhanced freshwater input, making southward transit by boat more difficult. Repeated Cordilleran glacial-calving events would have further challenged coastal transit on land and at sea. Following these events, ice-free coastal areas opened and seasonal sea ice was present along the Alaskan margin until at least 15 ka. Given evidence for humans south of the ice sheets by 16 ka and possibly earlier, we posit that early people may have taken advantage of winter sea ice that connected islands and coastal refugia. Marine ice-edge habitats offer a rich food supply and traversing coastal sea ice could have mitigated the difficulty of traveling southward in watercraft or on land over glaciers. We identify 24.5 to 22 ka and 16.4 to 14.8 ka as environmentally favorable time periods for coastal migration, when climate conditions provided both winter sea ice and ice-free summer conditions that facilitated year-round marine resource diversity and multiple modes of mobility along the North Pacific coast.more » « less
An official website of the United States government
