skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: The Dichotomous Affiliate Stable Matching Problem: Approval-Based Matching with Applicant-Employer Relations
While the stable marriage problem and its variants model a vast range of matching markets, they fail to capture complex agent relationships, such as the affiliation of applicants and employers in an interview marketplace. To model this problem, the existing literature on matching with externalities permits agents to provide complete and total rankings over matchings based off of both their own and their affiliates' matches. This complete ordering restriction is unrealistic, and further the model may have an empty core. To address this, we introduce the Dichotomous Affiliate Stable Matching (DASM) Problem, where agents' preferences indicate dichotomous acceptance or rejection of another agent in the marketplace, both for themselves and their affiliates. We also assume the agent's preferences over entire matchings are determined by a general weighted valuation function of their (and their affiliates') matches. Our results are threefold: (1) we use a human study to show that real-world matching rankings follow our assumed valuation function; (2) we prove that there always exists a stable solution by providing an efficient, easily-implementable algorithm that finds such a solution; and (3) we experimentally validate the efficiency of our algorithm versus a linear-programming-based approach.  more » « less
Award ID(s):
1846237 2124270 1852352 2150382 2039862
NSF-PAR ID:
10409114
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Etessami, Kousha ; Feige, Uriel ; Puppis, Gabriele (Ed.)
    To guarantee all agents are matched in general, the classic Deferred Acceptance algorithm needs complete preference lists. In practice, preference lists are short, yet stable matching still works well. This raises two questions: Why does it work well? Which proposals should agents include in their preference lists? We study these questions in a model, introduced by Lee, with preferences based on correlated cardinal utilities: these utilities are based on common public ratings of each agent together with individual private adjustments. Lee showed that for suitable utility functions, in large markets, with high probability, for most agents, all stable matchings yield similar valued utilities. By means of a new analysis, we strengthen Lee's result, showing that in large markets, with high probability, for all but the agents with the lowest public ratings, all stable matchings yield similar valued utilities. We can then deduce that for all but the agents with the lowest public ratings, each agent has an easily identified length O(log n) preference list that includes all of its stable matches, addressing the second question above. We note that this identification uses an initial communication phase. We extend these results to settings where the two sides have unequal numbers of agents, to many-to-one settings, e.g. employers and workers, and we also show the existence of an epsilon-Bayes-Nash equilibrium in which every agent makes relatively few proposals. These results all rely on a new technique for sidestepping the conditioning between the tentative matching events that occur over the course of a run of the Deferred Acceptance algorithm. We complement these theoretical results with an experimental study. 
    more » « less
  2. Matching markets consist of two disjoint sets of agents, where each agent has a preference list over agents on the other side. The primary objective is to find a stable matching between the agents such that no unmatched pair of agents prefer each other to their matched partners. The incompatibility between stability and strategy-proofness in this domain gives rise to a variety of strategic behavior of agents, which in turn may influence the resulting matching. In this paper, we discuss fundamental properties of stable matchings, review essential structural observations, survey key results in manipulation algorithms and their game-theoretical aspects, and more importantly, highlight a series of open research questions.

     
    more » « less
  3. null (Ed.)

    Bipartite b-matching, where agents on one side of a market are matched to one or more agents or items on the other, is a classical model that is used in myriad application areas such as healthcare, advertising, education, and general resource allocation. Traditionally, the primary goal of such models is to maximize a linear function of the constituent matches (e.g., linear social welfare maximization) subject to some constraints. Recent work has studied a new goal of balancing whole-match diversity and economic efficiency, where the objective is instead a monotone submodular function over the matching. Basic versions of this problem are solvable in polynomial time. In this work, we prove that the problem of simultaneously maximizing diversity along several features (e.g., country of citizenship, gender, skills) is NP-hard. To address this problem, we develop the first combinatorial algorithm that constructs provably-optimal diverse b-matchings in pseudo-polynomial time. We also provide a Mixed-Integer Quadratic formulation for the same problem and show that our method guarantees optimal solutions and takes less computation time for a reviewer assignment application. The source code is made available at https://github.com/faezahmed/diverse_matching.

     
    more » « less
  4. We study the problem of online learning in competitive settings in the context of two-sided matching markets. In particular, one side of the market, the agents, must learn about their preferences over the other side, the firms, through repeated interaction while competing with other agents for successful matches. We propose a class of decentralized, communication- and coordination-free algorithms that agents can use to reach to their stable match in structured matching markets. In contrast to prior works, the proposed algorithms make decisions based solely on an agent’s own history of play and requires no foreknowledge of the firms’ preferences.Our algorithms are constructed by splitting up the statistical problem of learning one’s preferences, from noisy observations, from the problem of competing for firms. We show that under realistic structural assumptions on the underlying preferences of the agents and firms, the proposed algorithms incur a regret which grows at most logarithmically in the time horizon. However, we note that in the worst case, it may grow exponentially in the size of the market. 
    more » « less
  5. Stable matching models are widely used in market design, school admission, and donor organ exchange. The classic Deferred Acceptance (DA) algorithm guarantees a stable matching that is optimal for one side (say men) and pessimal for the other (say women). A sex-equal stable matching aims at providing a fair solution to this problem. We demonstrate that under a class of correlated preferences, the DA algorithm either returns a sex-equal solution or has a very low sex-equality cost. 
    more » « less