skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effect of electron–electron interaction on magnitude of quantum oscillations of dissipative resistance in magnetic fields
Magneto-intersubband resistance oscillations (MISOs) of highly mobile 2D electrons in symmetric GaAs quantum wells with two populated subbands are studied in magnetic fields [Formula: see text] tilted from the normal to the 2D electron layer at different temperatures [Formula: see text]. The in-plane component ([Formula: see text]) of the field [Formula: see text] induces magnetic entanglement between subbands, leading to beating in oscillating density of states (DOS) and to MISO suppression. Model of the MISO suppression is proposed. Within the model, a comparison of MISO amplitude in the entangled and disentangled ([Formula: see text]) 2D systems yields both difference frequency of DOS oscillations, [Formula: see text], and strength of the electron–electron interaction, described by parameter [Formula: see text], in the 2D system. These properties are analyzed using two methods, yielding consistent but not identical results for both [Formula: see text] and [Formula: see text]. The analysis reveals an additional angular dependent factor of MISO suppression. The factor is related to spin splitting of quantum levels in magnetic fields.  more » « less
Award ID(s):
1702594
PAR ID:
10410290
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
132
Issue:
23
ISSN:
0021-8979
Page Range / eLocation ID:
234302
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Observation of intrinsic quantum transport properties of two-dimensional (2D) topological semimetals can be challenging due to suppression of high mobility caused by extrinsic factors introduced during fabrication. We demonstrate current annealing as a method to substantially improve electronic transport properties of 2D topological semimetal flakes. Contact resistance and resistivity were improved by factors up to 2×106 and 2×104, respectively, in devices based on exfoliated flakes of two topological semimetals, ZrSiSe and BaMnSb2. Using this method, carrier mobility in ZrSiSe was improved by a factor of 3800, resulting in observation of record-high mobility for exfoliated ZrSiSe. Quantum oscillations in annealed ZrSiSe appeared at magnetic fields as low as 5 T, and magnetoresistance increased by a factor of 104. We argue that a thermal process underlies this improvement. Finally, Raman spectroscopy and analysis of quantum oscillations in ZrSiSe indicate that the phonon modes and Fermi surface area are unchanged by current annealing. 
    more » « less
  2. The strong spin–orbit coupling (SOC) in lead halide perovskites, when inversion symmetry is lifted, has provided opportunities for investigating the Rashba effect in these systems. Moreover, the strong orbital moment, which, in turn, impacts the spin-pair in singlet and triplet electronic states, plays a significant role in enhancing the optoelectronic properties in the presence of external magnetic fields in lead halide perovskites. Here, we investigate the effect of weak magnetic fields (<1 T) on the photoluminescence (PL) properties of [Formula: see text] nanocrystals with and without Ruddlesden–Popper (RP) faults and single crystals of [Formula: see text]. Along with an enhancement in the PL intensity as a function of an external magnetic field, which is observed in both lead bromide perovskites, the PL emission red-shifts in [Formula: see text] nanocrystals. Density-functional theory calculations of the electronic band-edge in [Formula: see text] show almost no change in the energy gap as a function of the external magnetic field. The experimental results, thus, suggest the role of mixing of the triplet and singlet excitonic states under weak magnetic fields. This is further deduced from an enhancement in PL lifetimes as a function of the field in [Formula: see text]. In [Formula: see text], an increase in PL intensity is observed under weak magnetic fields; however, no changes in the peak energy or PL lifetimes are observed. The internal magnetic fields due to SOC are characterized for all three samples and found to be the highest for [Formula: see text] nanocrystals with RP faults. 
    more » « less
  3. We report on an all-optical investigation of coupled spin excitation modes in a series of magnetic trilayer structures. Using time-resolved magneto-optic Kerr effect (tr-MOKE) magnetometry, we observe multi-mode coherent spin excitations in [Formula: see text]/Ru/[Formula: see text] multilayers even though the tr-MOKE optical detection is sensitive only to the [Formula: see text] magnetization dynamics. Frequency shifts of the different modes indicate that the coupling between the [Formula: see text] and [Formula: see text] layers varies from anti-ferromagnetic to ferromagnetic to uncoupled as the Ru spacer layer thickness is increased from 8 Å to 200 Å. The lifetime of the high frequency coherent oscillations in the [Formula: see text] layer increases by over 200%–300% even in the case of uncoupled [Formula: see text] and [Formula: see text] layers with a 200 Å thick Ru spacer. The results suggest an additional method to decrease the damping of high-moment alloys in layered magnetic nanostructures. 
    more » « less
  4. We prove that discrete compact quantum groups (or more generally locally compact, under additional hypotheses) with coamenable dual are continuous fields over their central closed quantum subgroups, and the same holds for free products of discrete quantum groups with coamenable dual amalgamated over a common central subgroup. Along the way we also show that free products of continuous fields of [Formula: see text]-algebras are again free via a Fell-topology characterization for [Formula: see text]-field continuity, recovering a result of Blanchard’s in a somewhat more general setting. 
    more » « less
  5. Microwave loss in niobium metallic structures used for superconducting quantum circuits is limited by a native surface oxide layer formed over a timescale of minutes when exposed to an ambient environment. In this work, we show that nitrogen plasma treatment forms a niobium nitride layer at the metal–air interface, which prevents such oxidation. X-ray photoelectron spectroscopy confirms the doping of nitrogen more than 5 nm into the surface and a suppressed oxygen presence. This passivation remains stable after aging for 15 days in an ambient environment. Cryogenic microwave characterization shows an average filling-factor-adjusted two-level-system loss tangent [Formula: see text] of [Formula: see text] for resonators with a 3 [Formula: see text]m center strip and [Formula: see text] for a 20 [Formula: see text]m center strip, exceeding the performance of unpassivated samples by a factor of four. 
    more » « less