skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Complete Genome Sequences of Five Phietaviruses Infecting Staphylococcus aureus
ABSTRACT The annotated whole-genome sequences of five cultured phietaviruses infecting Staphylococcus aureus are presented. They are closely related to prophages that were previously sequenced as part of S. aureus genomes.  more » « less
Award ID(s):
1750624
PAR ID:
10410727
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Dennehy, John J.
Date Published:
Journal Name:
Microbiology Resource Announcements
Volume:
11
Issue:
10
ISSN:
2576-098X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Staphylococcus aureusis an opportunistic pathogen frequently detected in environmental waters and commonly causes skin infections to water users.S. aureusconcentrations in fresh, brackish, and marine waters are positively correlated with water turbidity. To reduce the risk ofS. aureusinfections from environmental waters,S. aureussurvival (stability and multiplication) in turbid waters needs to be investigated. The aim of this study was to measureS. aureusin turbid fresh and brackish water samples and compare the concentrations over time to determine which conditions are associated with enhancedS. aureussurvival. Eighteen samples were collected from fresh and brackish water sources from two different sites on the east side of Oʻahu, Hawaiʻi.S. aureuswas detected in microcosms for up to 71 days with standard microbial culturing techniques. On average, the greatest environmental concentrations ofS. aureuswere in high turbidity fresh waters followed by high turbidity brackish waters. Models demonstrate that salinity and turbidity significantly predict environmentalS. aureusconcentrations.S. aureuspersistence over the extent of the experiment was the greatest in high turbidity microcosms with T90's of 147.8 days in brackish waters and 80.8 days in freshwaters. This study indicates that saline, turbid waters, in the absence of sunlight, provides suitable conditions for enhanced persistence ofS. aureuscommunities that may increase the risk of exposure in environmental waters. Practitioner PointsStaphylococcus aureusconcentrations, survival, and persistence were assessed in environmental fresh and brackish waters.Experimental design preserved in situ conditions to measureS. aureussurvival.Higher initialS. aureusconcentrations were observed in fresh waters with elevated turbidity, while sustained persistence was greater in brackish waters.Water turbidity and salinity were both positively associated withS. aureusconcentrations and persistence.Climate change leads to more intense rainfall events which increase water turbidity and pathogen loading, heightening the exposure risk toS. aureus. 
    more » « less
  2. null (Ed.)
    Staphylococcus aureus infections are of growing concern given the increased incidence of antibiotic resistant strains. Egypt, like several other countries, has seen alarming increases in methicillin-resistant S. aureus (MRSA) infections. This species can rapidly acquire genes associated with resistance, as well as virulence factors, through mobile genetic elements, including phages. Recently, we sequenced 56 S. aureus genomes from Alexandria Main University Hospital in Alexandria, Egypt, complementing 17 S. aureus genomes publicly available from other sites in Egypt. In the current study, we found that the majority (73.6%) of these strains contain intact prophages, including Biseptimaviruses, Phietaviruses, and Triaviruses. Further investigation of these prophages revealed evidence of horizontal exchange of the integrase for two of the prophages. These Egyptian S. aureus prophages are predicted to encode numerous virulence factors, including genes associated with immune evasion and toxins, including the Panton–Valentine leukocidin (PVL)-associated genes lukF-PV/lukS-PV. Thus, prophages are likely to be a major contributor to the virulence of S. aureus strains in circulation in Egypt. 
    more » « less
  3. Parsek, Matthew (Ed.)
    ABSTRACT Chronic polymicrobial infections involvingPseudomonas aeruginosaandStaphylococcus aureusare prevalent, difficult to eradicate, and associated with poor health outcomes. Therefore, understanding interactions between these pathogens is important to inform improved treatment development. We previously demonstrated thatP. aeruginosais attracted toS. aureususing type IV pili (TFP)-mediated chemotaxis, but the impact of attraction onS. aureusgrowth and physiology remained unknown. Using live single-cell confocal imaging to visualize microcolony structure, spatial organization, and survival ofS. aureusduring coculture, we found that interspecies chemotaxis providesP. aeruginosaa competitive advantage by promoting invasion into and disruption ofS. aureusmicrocolonies. This behavior rendersS. aureussusceptible toP. aeruginosaantimicrobials. Conversely, in the absence of TFP motility,P. aeruginosacells exhibit reduced invasion ofS. aureuscolonies. Instead,P. aeruginosabuilds a cellular barrier adjacent toS. aureusand secretes diffusible, bacteriostatic antimicrobials like 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO) into theS. aureuscolonies. Reduced invasion leads to the formation of denser and thickerS. aureuscolonies with increased HQNO-mediated lactic acid fermentation, a physiological change that could complicate treatment strategies. Finally, we show thatP. aeruginosamotility modifications of spatial structure enhance competition againstS. aureus. Overall, these studies expand our understanding of howP. aeruginosaTFP-mediated interspecies chemotaxis facilitates polymicrobial interactions, highlighting the importance of spatial positioning in mixed-species communities. IMPORTANCEThe polymicrobial nature of many chronic infections makes their eradication challenging. Particularly, coisolation ofPseudomonas aeruginosaandStaphylococcus aureusfrom airways of people with cystic fibrosis and chronic wound infections is common and associated with severe clinical outcomes. The complex interplay between these pathogens is not fully understood, highlighting the need for continued research to improve management of chronic infections. Our study unveils thatP. aeruginosais attracted toS. aureus, invades into neighboring colonies, and secretes anti-staphylococcal factors into the interior of the colony. Upon inhibition ofP. aeruginosamotility and thus invasion,S. aureuscolony architecture changes dramatically, wherebyS. aureusis protected fromP. aeruginosaantagonism and responds through physiological alterations that may further hamper treatment. These studies reinforce accumulating evidence that spatial structuring can dictate community resilience and reveal that motility and chemotaxis are critical drivers of interspecies competition. 
    more » « less
  4. null (Ed.)
    Abstract Buruli ulcer is a neglected tropical disease caused by the environmental pathogen, Mycobacterium ulcerans whose major virulence factor is mycolactone, a lipid cytotoxic molecule. Buruli ulcer has high morbidity, particularly in rural West Africa where the disease is endemic. Data have shown that infected lesions of Buruli ulcer patients can be colonized by quorum sensing bacteria such as Staphylococcus aureus, S. epidermidis, and Pseudomonas aeruginosa , but without typical pathology associated with those pathogens’ colonization. M. ulcerans pathogenesis may not only be an individual act but may also be dependent on synergistic or antagonistic mechanisms within a polymicrobial network. Furthermore, co-colonization by these pathogens may promote delayed wound healing, especially after the initiation of antibiotic therapy. Hence, it is important to understand the interaction of M. ulcerans with other bacteria encountered during skin infection. We added mycolactone to S. aureus and incubated for 3, 6 and 24 h. At each timepoint, S. aureus growth and hemolytic activity was measured, and RNA was isolated to measure virulence gene expression through qPCR and RNASeq analyses. Results showed that mycolactone reduced S. aureus hemolytic activity, suppressed hla promoter activity, and attenuated virulence genes, but did not affect S. aureus growth . RNASeq data showed mycolactone greatly impacted S. aureus metabolism. These data are relevant and significant as mycolactone and S. aureus sensing and response at the transcriptional, translational and regulation levels will provide insight into biological mechanisms of interspecific interactions that may play a role in regulation of responses such as effects between M. ulcerans , mycolactone, and S. aureus virulence that will be useful for treatment and prevention. 
    more » « less
  5. ABSTRACT Staphylococcus aureus is a leading cause of a wide range of clinical infections. Here, we announce the complete genome sequence of S. aureus siphophage Lorac, a phiETA-like temperate phage that is similar at the nucleotide level to the previously described S. aureus prophage phiNM2. 
    more » « less